利用Adams/MATLAB联合仿真平台,对一种具有周向均匀分布3个舵机的操纵机构共轴双旋翼飞行器悬停控制问题进行了研究。考虑到目前对上旋翼和下旋翼之间气动干扰没有准确的数学模型,在动力学建模时利用叶素理论和Pitt-Peters动态入流模型对飞行器的气动干扰和挥舞运动进行近似建模,其他未准确建模的部分用控制算法进行补偿。选用鲁棒性较强的滑动模态控制算法并与PID算法相结合对飞行器姿态进行控制,同时利用PID算法建立姿态和位置的关系,使其具备按照空间坐标点悬停的能力。将装配模型导入Adams中建立动力学模型,在Simulink搭建控制器并进行联合仿真。研究结果验证了所设计控制方法的有效性,飞行器悬停位置的最大动态误差小于±0.2 m.
为了实时控制激光切割中激光焦点与辅助气体中轴线的相对位置,提出了一种模糊PID控制的电磁作动永磁复位式3自由度电磁作动器。介绍了电磁作动器结构,建立了相应系统数学模型。采用模糊PID控制算法以仿真与实验相结合的方式研究了电磁作动器的控制特性,并在PID控制器参数完全相同情况下,与传统PID控制算法的控制特性进行对比分析。仿真与实验结果表明:在x轴方向,与传统PID控制算法位置响应时间相比,仿真位置响应时间变化不大,实验位置响应时间减少1.50 s;在y轴方向,与传统PID控制算法位置响应时间相比,仿真位置响应时间减少0.48 s,实验位置响应时间减少1.88 s. 经过对模糊PID控制器参数的进一步优化,作动平台在x轴方向响应时间可达0.10 s. 与传统PID控制器相比,模糊PID控制器响应时间更短、响应速度更快。