Research Progress of Al-based Alloy Fuels and Perspectives for Applications in Solid Propellants

ZHANG Jian-kan,ZHAO Feng-qi,QIN Zhao,LI Hui

PDF(13894 KB)
  • Sponsored by:

    Editor-In-Chief:

    ISSN 1007-7812

     
  • Hosted By:

    Published By: Chinese Journal of Explosives & Propellants

    CN 61-1310/TJ

PDF(13894 KB)
Chinese Journal of Explosives & Propellants ›› 2023, Vol. 46 ›› Issue (2) : 101-116. DOI: 10.14077/j.issn.1007-7812.202203029

Research Progress of Al-based Alloy Fuels and Perspectives for Applications in Solid Propellants

  • ZHANG Jian-kan,ZHAO Feng-qi,QIN Zhao,LI Hui
Author information +
History +

Abstract

In order to clarify the relationship between elemental composition, phase composition and intrinsic characteristics of Al-based alloy fuels, the influence laws on physicochemical characteristics and combustion properties when low boiling point metals, low melting point metals and high melting point metals are used as alloying elements were summarized respectively, while the differences in ignition and combustion mechanisms of different aluminum-based alloy fuels were analyzed. Aluminum-low boiling point metal alloy(Al-MLB), aluminum-low melting point metal alloy(Al-MLM)and aluminum-high melting point metal alloy(Al-MHM)have particular ignition and combustion mechanism, and thus possess the influence of physicochemical properties and combustion characteristics. During the combustion process of aluminum-based alloy fuels, there are various principles for improving combustion efficiency such as microexplosion of Al-MLB, exothermic alloying/oxidation channels in Al-MLM, and exothermic metastable phase in Al-MHM. Research progress of the research on the application of Al-based alloy fuels in solid propellants was summarized in terms of energy enhancement and burning rate regulation. It is pointed out that the energy performance of solid propellants can be improved through the increase of theoretical specific impulse, combustion efficiency, density and the decrease of two-phase flow loss. The effect of the Al-based alloy fuels on the burning rate of solid propellants can be adjusted by the component of oxidizer and binder. The key point is to determine the relationship for preparation-structures-characteristics, solve the contradiction between the safety and activity, and improve the mechanism of combustion catalysis and energy release in reaction, which are crucial for the design, application and performance control for Al-based alloy as fuels for propellants. 75 References were attached.

Key words

solid propellant / Al-based alloy fuel / burning / metal fuel / aluminum / burning rate

Cite this article

Download Citations
ZHANG Jian-kan,ZHAO Feng-qi,QIN Zhao,LI Hui. Research Progress of Al-based Alloy Fuels and Perspectives for Applications in Solid Propellants. Chinese Journal of Explosives & Propellants. 2023, 46(2): 101-116 https://doi.org/10.14077/j.issn.1007-7812.202203029

References

[1] 郭延佩, 李永辉, 李建民,等. 铝含量和含氟有机化合物对丁羟推进剂燃烧性能的影响[J]. 火炸药学报, 2020, 43(1):74-80.
GUO Yan-pei, LI Yong-hui, LI Jian-min, et al. Effect of aluminum content and organic fluoride on the combustion properties of hydroxyl terminated polybutadiene propellant[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2020, 43(1):74-80.
[2]王江宁, 李伟, 郑伟,等. 铝粉含量对CL-20/Al-CMDB推进剂燃速的影响[J]. 火炸药学报, 2018, 41(4): 404-407.
WANG Jiang-ning, LI Wei, ZHENG Wei, et al. Effect of aluminum powder content on the burning rate of CL-20/Al-CMDB propellants[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2018, 41(4): 404-407.
[3]周禹男. 铝及铝基固体推进剂能量释放特性研究[D]. 杭州: 浙江大学, 2019.
ZHOU Yu-nan. Study on energy release characteristics of aluminum particles and aluminum-based solid propellants[D]. Hangzhou: Zhejiang University, 2019.
[4]KOROTKIKH A, ARKHIPOV V, GLOTOV O, et al. Effect of metal additives on the thermal decomposition and ignition of composite solid propellants with ALEX[C]//47th International Annual Conference of ICT. Karlsruhe: Fraunhofer, 2016.
[5]TRUNOV M A, SCHOENITZ M, DREIZIN E L. Ignition of aluminum powders under different experimental conditions[J]. Propellants, Explosives, Pyrotechnics, 2005, 30(1):36-43.
[6]敖文, 刘佩进, 吕翔, 等. 固体推进剂燃烧过程铝团聚研究进展[J]. 宇航学报, 2016, 37(4):371-380.
AO Wen, LIU Pei-jin, Lü Xiang, et al. Review of aluminum agglomeration during the combustion of solid propellants[J]. Journal of Astronautics, 2016, 37(4):371-380.
[7]LIU T K. Experimental and model study of agglomeration of burning aluminized propellants[J]. Journal of Propulsion & Power, 2015, 21(5):797-806.
[8]GEISLER R L. A global view of the use of aluminum fuel in solid rocket motors[C]// 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Indianapolis: AIAA, 2002.
[9]GANY A, CAVENY L H. Agglomeration and ignition mechanism of aluminum particles in solid propellants[J]. Symposium on Combustion, 1979, 17(1):1453-1461.
[10]YAVOR Y, ROSENBAND V, GANY A. Reduced agglomeration in solid propellants containing porous aluminum[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2014, 228(10):1857-1862.
[11]BROOKS K P, BECKSTEAD M W. Dynamics of aluminum combustion[J]. Journal of Propulsion and Power, 1995, 11(4):769-780.
[12]CHOWDHURY S, SULLIVAN K, PIEKIEL N, et al. Diffusive vs explosive reaction at the nanoscale[J]. The Journal of Physical Chemistry C, 2010, 114(20):9191-9195.
[13]LEVITAS V I, ASAY B W, SON S F, et al. Melt dispersion mechanism for fast reaction of nanothermites[J]. Applied Physics Letters, 2006, 89(7):071909.
[14]OHKURA Y, RAO P M, ZHENG X L. Flash ignition of Al nanoparticles: mechanism and applications[J]. Combustion and Flame, 2011, 158(12):2544-2548.
[15]BOCKMON B S, PANTOYA M L, SON S F, et al. Combustion velocities and propagation mechanisms of metastable interstitial composites[J]. Journal of Applied Physics, 2005, 98(6):580-240.
[16]李鑫, 赵凤起, 郝海霞, 等. 不同类型微/纳米铝粉点火燃烧特性研究[J]. 兵工学报, 2014, 35(5):640-647.
LI Xin, ZHAO Feng-qi, HAO Hai-xia, et al. Research on ignition and combustion properties of different micro/nano-aluminum powders[J]. Acta Armamentarii, 2014, 35(5): 640-647.
[17]DREIZIN E L. Metal-based reactive nanomaterials[J]. Progress in Energy and Combustion Science, 2009, 35(2):141-167.
[18]RISHA G A, HUANG Y, YETTER R A, et al. Experimental investigation of aluminum particle dust cloud combustion[C]// 43rd Aerospace Sciences Meeting and Exhibition. Reno: AIAA, 2005.
[19]MARY B, DUBOIS C, CARREAU P J, et al. Rheological properties of suspensions of polyethylene-coated aluminum nanoparticles[J]. Rheologica Acta, 2006, 45(5):561-573.
[20]BAKHTIYAROV S I, OXLEY J C, SMITH J L, et al. Rheological studies of functional polyurethane composite:Part 1. Rheology of polyurethane composite, its compounds with and without solid additives(aluminum flakes)[J]. Journal of Elastomers and Plastics, 2017, 50(17):222-240.
[21]VERMA S, RAMAKRISHNA P A. Effect of specific surface area of aluminum on composite solid propellant burning[J]. Journal of Propulsion & Power, 2013, 29(5):1200-1206.
[22]SIPPEL T R, SON S F, GROVEN L J. Aluminum agglomeration reduction in a composite propellant using tailored Al/PTFE particles[J]. Combustion and Flame, 2014, 161(1):311-321.
[23]EAPEN B Z, HOFFMANN V K, SCHOENITZ M, et al. Combustion of aerosolized spherical aluminum powders and flakes in air[J]. Combustion Science and Technology, 2004, 176(7): 1055-1069.
[24]YANG Y J, ZHAO F Q, YUAN Z F, et al. On the combustion mechanisms of ZrH2 in DB propellants[J]. Physical Chemistry Chemical Physics, 2017,19: 32597-32604.
[25]易幻. Al-Ce及Al-Mg-Ce合金燃料的热性能研究[D]. 武汉: 华中科技大学, 2016.
YI Huan. Study on thermal performance of Al-Ce and Al-Mg-Ce alloy fuels[D]. Wuhan: Huazhong University of Science & Technology, 2016.
[26]侯晓婷, 张明, 张福勇,等. 双基系推进剂用绿色燃烧催化剂研究进展[J]. 火炸药学报, 2021, 44(3): 271-283.
HOU Xiao-ting, ZHANG Ming, ZHANG Fu-yong, et al. Research progress of green combustion catalysts for DB/CMDB propellants[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2021,44(3):271-283.
[27]ZHANG M, ZHAO F Q, AN T, et al. Catalytic effects of rGO-MFe2O4(M=Ni, Co and Zn)nanocomposites on the thermal decomposition performance and mechanism of energetic FOX-7[J]. The Journal of Physical Chemistry A, 2020, 124(9):1673-1681
[28]HOLROYD N J H, SCAMANS G M, NEWMAN R C, et al. Corrosion and stress corrosion of aluminum-lithium alloys[J]. Aluminum-lithium Alloys, 2014(2):457-500.
[29]TERRY B C, SIPPEL T R, PFEIL M A, et al. Removing hydrochloric acid exhaust products from high performance solid rocket propellant using aluminum-lithium Alloy[J]. Journal of Hazardous Materials, 2016, 317:259-266.
[30]TERRY B C, GUNDUZ I E, PFEIL M A, et al. A mechanism for shattering microexplosions and dispersive boiling phenomena in aluminum-lithium alloy based solid propellant[J]. Proceedings of the Combustion Institute, 2016, 36:2309-2316.
[31]ZHU Y L, LE W, ZHAO W J, et al. Promising fuels for energetics: spherical Al-Li powders with high reactivity via incorporation of Li[J]. Fuel, 2022, 323(2):124393.
[32]SCHOENITZ M, DREIZIN E L. Structure and properties of Al-Mg mechanical alloys[J]. Journal of Materials Research, 2003, 18(8): 1827-1836.
[33]SCHOENITZ M, DREIZIN E L. Oxidation processes and phase changes in metastable Al-Mg alloys[J]. Journal of Propulsion and Power, 2004, 20(6):1064-1068.
[34]SHOSHIN Y L, MUDRYY R S, DREIZIN E L. Preparation and characterization of energetic Al-Mg mechanical alloy powders[J]. Combustion and Flame, 2002, 128(3):259-269.
[35]HATEM B, HAN C W, GUNDUZ I E, et al. Ignition and combustion behavior of mechanically activated Al-Mg particles in composite solid propellants[J]. Combustion and Flame, 2018, 194:410-418.
[36]DREIZIN E L, SHOSHIN Y L, MUDRYY R S, et al. Constant pressure flames of aluminum and aluminum-magnesium mechanical alloy aerosols in microgravity[J]. Combustion and Flame, 2002, 130(4):381-385.
[37]LIU L, AO W, WEN Z, et al. Modifying the ignition, combustion and agglomeration characteristics of composite propellants via Al-Mg alloy additives[J]. Combustion and Flame, 2022, 238:111926.
[38]FENG Y, MA L K, XIA Z X, et al. Ignition and combustion characteristics of single gas-atomized Al-Mg alloy particles in oxidizing gas flow[J]. Energy, 2020, 196:117036.
[39]陈振华, 陈鼎. 机械合金化与固液反应球磨[M]. 北京:化学工业出版社, 2006.
[40]王尔德, 刘京雷, 刘祖岩. 机械合金化诱导固溶度扩展机制研究进展[J]. 粉末冶金技术, 2002, 20(2):109-112.
WANG Er-de, LIU Jing-lei, LIU Zu-yan. The research progression on the kinetics of extension solid solubility induced by mechanical alloying[J]. Powder Metallurgy Technology, 2002, 20(2):109-112.
[41]AO W, FAN Z M, LIU L, et al. Agglomeration and combustion characteristics of solid composite propellants containing aluminum-based alloys [J]. Combustion and Flame, 2020, 220:288-297.
[42]SHEN C, YAN S, YAO J, et al. Combustion behavior of composite solid propellant reinforced with Al-based alloy fuel[J]. Materials Letters, 2021. 304(3):130608.
[43]刘庆, 陈林泉, 王健儒, 等. Zr/Al基高能固体推进剂的能量特性分析[J]. 火炸药学报, 2019,42(2): 169-174.
LIU Qing, CHEN Lin-quan, WANG Jian-ru, et al. Analysis of energy characteristics of Zr/Al-based high-energy solid propellants[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2019,42(2): 169-174.
[44]闫石, 潘兵, 袁庆庆,等. 球形Al-Si合金燃料的制备及其反应特性[J]. 含能材料, 2020, 28(8):766-772.
YAN Shi, PAN Bing, YUAN Qing-qing, et al. Preparation and reaction characteristics of spherical Al-Si alloy fuel[J]. Chinese Journal of Energetic Materials, 2020, 28(8):766-772.
[45]PAN B, YAN S, YUAN Q Q, et al. Exploding wire preparation of core-shell aluminum-silicon nanoparticles and characterization as energetic material[J]. Journal of Nanoparticle Research, 2021, 23(12): 258.
[46]李林福, 蔡水洲, 徐长娟, 等. 高活性集中放热的Al-Mg-Zr合金燃料的制备与性能[J]. 含能材料, 2016, 24(2): 137-143.
LI Lin-fu, CAI Shui-zhou, XU Chang-juan, et al. Preparation and performance of high reactive Al-Mg-Zr alloy fuels with intensive heat release [J]. Chinese Journal of Energetic Materials, 2016, 24(2): 137-143.
[47]SHOSHIN Y L, DREIZIN E L. Particle combustion rates for mechanically alloyed Al-Ti and aluminum powders burning in air[J]. Combustion and Flame, 2006, 145(4):714-722.
[48]SHOSHIN Y L, TRUNOV M A, ZHU X Y, et al. Ignition of aluminum-rich Al-Ti mechanical alloys in air[J]. Combustion and Flame, 2006, 144(4): 688-697.
[49]SHOSHIN Y, DREIZIN E L. Laminar lifted flame speed measurements for aerosols of metals and mechanical alloys[J]. AIAA Journal, 2004, 42(7):1416-1426.
[50]BADIOLA C, SCHOENITZ M, DREIZIN E. Mechanically alloyed Al-Ti powders prepared by mechanical milling at cryogenic temperatures[C]// 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Denver: AIAA, 2009.
[51]VOROZHTSOV A, LERNER M, RADKEVICH N, et al. Production and characterization of Al-Cu and Al-Ni nanoparticles[J]. Materials Research Society Symposia Proceedings, 2015, 1758: 44-55.
[52]FU H, ZOU H, CAI S Z. The role of microstructure refinement in improving the thermal behavior of gas atomized Al-Eu alloy powder[J]. Advanced Powder Technology, 2016, 27(5): 1898-1904.
[53]MACEK A, SEMPLE M K. Combustion of boron particles at elevated pressures[J]. Symposium(International)on Combustion, 1971, 13(1):859-868.
[54]WANG W, ZOU H, CAI S Z. The oxidation and combustion properties of gas atomized aluminum-boron-europium alloy powders[J]. Propellants, Explosives, Pyrotechnics, 2019, 44:1-9.
[55]HU A B, CAI S Z. Research on the novel Al-W alloy powder with high volumetric combustion enthalpy[J]. Journal of Materials Research and Technology, 2021, 13:311-310.
[56]HU A B, CAI S Z. Spatial phase structure and oxidation process of Al-W alloy powder with high sphericity[J]. Journal of Materials Science and Technology, 2022, 114:62-72.
[57]ZHANG D M, ZOU H, CAI S Z. Effect of iron coating on thermal properties of aluminum-lithium alloy powder[J]. Propellants, Explosives, Pyrotechnics, 2017, 42(8): 953-959.
[58]CAO Z Y, HU A B, XIA B, et al. Preparation and characterization of aluminum-lithium alloy powder coated by in-situ polymerization of styrene[J]. Propellants, Explosives, Pyrotechnics, 2020, 45(7): 1141-1152.
[59]HUANG H T, ZOU M S, GUO X Y, et al. Analysis of the aluminum reaction efficiency in a hydro-reactive fuel propellant used for a water ramjet[J]. Combustion Explosion & Shock Waves, 2013, 49(5):541-547.
[60]HUANG H T, ZOU M S, GUO X Y, et al. Study of different Al/Mg powders in hydroreactive fuel propellant used for water ramjet[J]. Journal of Energetic Materials, 2014, 32(sup1): S83-S93.
[61]LEMPERT D B, BRAMBILLA M, DELUCA L T. Ballistic effectiveness of Zr-containing composite solid propellants as a function of binder nature and mass fraction[C]// 4th European Conference for Aeronautics and Space Sciences. Saint Petersburg: EDP Sciences, 2013.
[62]焦清介,张帆,赵婉君,等. 铝锰合金点火药燃烧性能与安定性试验研究[J]. 安全与环境学报, 2022, 22(5): 2372-2378.
JIAO Qing-jie, ZHANG Fan, ZHAO Wan-jun, et al. Experimental study on combustion performance and stability of AlMn12 alloy ignition composition[J]. Journal of Safety and Environment, 2022, 22(5): 2372-2378.
[63]LEMPERT D B, NECHIPORENKO G N, MANELIS G B. Energetic capabilities of high-density composite solid propellants containing zirconium or its hydride[J]. Combustion Explosion & Shock Waves, 2011, 47(1):45-54.
[64]GOLDSBOROUGH M, ROSENFIELD G, KOSOWSKI B, et al. High impulse density ccomposite propellant systems[C]//47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. San Diego: AIAA, 2011.
[65]YAN Q L, ZHAO F Q, KUO K K, et al. Catalytic effects of nano additives on decomposition and combustion of RDX-, HMX-, and AP-based energetic compositions[J]. Progress in Energy and Combustion Science, 2016, 57(4):75-136.
[66]李军强, 何俊武, 张超,等. 金属粉对NC/TMETN/FOX-7低敏感改性双基推进剂燃烧性能的影响[J]. 火炸药学报, 2019, 42(1): 84-88.
LI Jun-qiang,HE Jun-wu,ZHANG Chao, et al. Effect of metal powder on the combustion performance of NC/TMETN/FOX-7 low sensitive CMDB propellant[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2019, 42(1): 84-88.
[67]BELAL H M. Modifying burning rate and agglomeration size in aluminized composite solid propellants using mechanically activated metals[D]. West Lafayette: Purdue University, 2016.
[68]CRISTILLI F. Burning behavior of ADN-based propellants loaded with Al-Mg mechanically activated powders[D]. Milan: Polytechnic University of Milan, 2017.
[69]TERRY B C, RUBIO M A, GUNDUZ I E, et al. Altering agglomeration in a composite propellant with aluminum-silicon eutectic alloy[J]. Journal of Propulsion and Power, 2019, 35(6):1-9.
[70]MIN B S, HYUN H S. Study on combustion characteristics of HTPB/AP propellants containing zirconium[J]. Journal of Propulsion & Power, 2012, 28(1):211-213.
[71]DIEZ G A, MANSHIP T D, TERRY B C, et al. Characterization of an aluminum-lithium-alloy-based composite propellant at elevated pressures[J]. Journal of Propulsion and Power, 2020, 37(6):1-6.
[72]毛根旺, 吴婉娥, 胡松启,等. HTPB/镁铝合金含量对含硼富燃推进剂压强指数影响[J]. 机械科学与技术, 2008, 27(1):5-8.
MAO Gen-wang, WU Wan-e, HU Song-qi, et al. Influence of HTPB/MA content on pressure exponent of boron-based fuel-rich propellant[J]. Mechanical Science and Technology for Aerospace Engineering, 2008, 27(1):5-8.
[73]LIU T, CHEN X, XU H X, et al. The Effect of Li-Al alloy on combustion performance of B/PTFE fuel-rich propellant[J]. Advanced Materials Research, 2014, 904: 222-227.
[74]GLOTOV O G, SIMONENKO V N, ZARKO V E. Combustion characteristics of propellants containing aluminum-boron mechanical alloy[C]//35th International Annual Conference of ICT, Karlsruhe: Fraunhofer, 2004: 107/1-107/18.
[75]GLOTOV O G, SURODIN G S, ZARKO V E, et al. Combustion characteristics of model composite propellants with aluminum diboride[C]//49th International Annual Conference of ICT, Karlsruhe: Fraunhofer, 2018:110/1-110/14.
PDF(13894 KB)

23

Accesses

0

Citation

Detail

Sections
Recommended

/