Application and Research Progress of Dihydroxylammonium 5,5’-bistetrazole-1,1’-diolate(TKX-50)in Explosives & Propellants

ZHANG Kun,WANG Jian,WANG Xiao-feng,FENG Xiao-jun

PDF(1757 KB)
  • Sponsored by:

    Editor-In-Chief:

    ISSN 1007-7812

     
  • Hosted By:

    Published By: Chinese Journal of Explosives & Propellants

    CN 61-1310/TJ

PDF(1757 KB)
Chinese Journal of Explosives & Propellants ›› 2022, Vol. 45 ›› Issue (1) : 20-29. DOI: 10.14077/j.issn.1007-7812.202104023

Application and Research Progress of Dihydroxylammonium 5,5’-bistetrazole-1,1’-diolate(TKX-50)in Explosives & Propellants

  • ZHANG Kun1,WANG Jian2,WANG Xiao-feng1,FENG Xiao-jun1
Author information +
History +

Abstract

The synthesis and preparation, crystal properties and mechanical properties of dihydroxylammonium-5,5'-bistetrazole-1,1'-diolate(TKX-50)compound are introduced, and the current research status on performance improvement, compatibility, energy, and safety applications are summarized. The difference between TKX-50 and traditional neutral nitramine explosives were compared. The TKX-50 is an ionic salt structure without the traditional energetic group —NO2, and the energy release method is by breaking high-energy bonds instead of redox reactions, which brings the calculated energy characteristics such as enthalpy of formation, detonation heat, and combustion heat have a large difference with the test results. Finally, the application advantages and existing problems of TKX-50 were summarized, and the future development direction and research focus were prospected. It is pointed out that the energy characteristics of nitrogen-rich energetic ionic salts represented by TKX-50 should be fully exploited, and the special properties of such materials should be utilized to expand their application in the field of propellants and explosives.

Key words

applied chemistry / dihydroxylammonium5,5'-bistetrazole-1,1'-diolate / TKX-50 / physicochemical properties / compatibility / nitrogen-rich energetic ionic salts / HATO

Cite this article

Download Citations
ZHANG Kun,WANG Jian,WANG Xiao-feng,FENG Xiao-jun. Application and Research Progress of Dihydroxylammonium 5,5’-bistetrazole-1,1’-diolate(TKX-50)in Explosives & Propellants. Chinese Journal of Explosives & Propellants. 2022, 45(1): 20-29 https://doi.org/10.14077/j.issn.1007-7812.202104023

References

[1] 王晓峰. 军用混合炸药的发展趋势[J]. 火炸药学报, 2011, 34(4):1-4.
WANG Xiao-feng. Developmental trends in military composite explosive[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2011, 34(4):1-4.
[2]董海山. 高能量密度材料的发展及对策[J]. 含能材料, 2004, 12(A01):1-12.
DONG Hai-shan. Development and countermeasures of high energy density materials[J]. Chinese Journal of Energetic Materials, 2004, 12(A01):1-12.
[3]LI Yu-chuan, QI Cai, LI Sheng-hua, et al. 1,1 '-Azobis-1,2,3-triazole: A high-nitrogen compound with stable N-8 structure and photochromism[J]. Journal of the American Chemical Society, 2010, 132(35): 12172-12173.
[4]MILLAR R W, PHILBIN S P, CLARIDGE R P, et al. Studies of novel heterocyclic insensitive high explosive compounds: pyridines, pyrimidines, pyrazines and their bicyclic analogues[J]. Propellants, Explosives, Pyrotechnics, 2004, 29(2): 81-92.
[5]GOLUBEV V K, KLAPÖTKE T M. Comparative analysis of TKX-50, MAD-X1, RDX and HMX blasting performance in one-, two- and three-dimensional geometry[C]∥Proceedings of the 17th Seminar on New Trends in Research of Energetic Materials. Pardubice: [s.n.], 2014,(1): 220-227.
[6]CHAVEZ D E,HISKEY M A,GILARDI R D. 3,3'-Azobis(6-amino1,2,4,5-tetrazine): A novel high-nitrogen energetic material[J]. Angewandte Chemie, 2000, 39(10):1791-1793.
[7]FISCHER N,FISCHER D, KLAPÖTKE T M, et al. Pushing the limits of energetic materials: the synthesis and characterization of dihydroxylammonium 5,5'-bistetrazole-1,1'-diolate[J]. Journal of Materials Chemistry, 2012, 22(38): 20418-20422.
[8]苗成才, 吉应旭, 钱露,等. 新型联四唑类含能材料TKX-50的研究进展[J]. 化学推进剂与高分子材料, 2015, 13(5):11-16.
MIAO Cheng-cai, JI Ying-xu, QIAN Lu, et al. Research progress of novel bistetrazole-type energetic material TKX-50[J]. Chemical Propellants & Polymeric Materials, 2015, 13(5):11-16.
[9]熊晓雪, 薛向贵, 杨海君, 等. 1,1'-二羟基-5,5'-联四唑二羟胺盐(TKX-50)研究进展[J].含能材料, 2020, 28(8): 810-816.
XIONG Xiao-xue, XUE Xiang-gui, YANG Hai-jun, et al. Review on dihydroxylammonium 5,5'-bistetrazole-1,1'-diolate(TKX-50)[J]. Chinese Journal of Energetic Materials, 2020, 28(8):810-816.
[10]赵廷兴, 田均均, 李磊, 等. 5,5'-联四唑-1,1'-二氧二羟铵(TKX-50)50克量级制备放大工艺[J]. 含能材料, 2014(6): 744-747.
ZHAO Ting-xing, TIAN Jun-jun, LI Lei, et al. Up-sizing 50 grams-scale synthesis technology of dihydroxylammonium-5,5'-bistetrazole-l,1'-diolate(TKX-50)[J]. Chinese Journal of Energetic Materials, 2014, 22(6):744-747.
[11]杨尧. 1, 1'-二羟基-5, 5'-联四唑的含能离子化合物的合成工艺及性能研究[D]. 南京:南京理工大学, 2015.
YANG Yao. Study on the preparation and properties of energetic ion compounds of 1,1'-BTO[D].Nanjing: Nanjing University of Science & Technology, 2015.
[12]朱周朔, 姜振明, 王鹏程, 等. 5, 5'-联四唑-1, 1'-二氧二羟铵的合成及其性能[J]. 含能材料, 2014, 22(3): 332-336.
ZHU Zhou-shuo, JIANG Zhen-ming, WANG Peng-chen, et al. Synthesis and properties of dihydroxylammonium 5,5'-bistetrazole-1,1'-diolate[J]. Chinese Journal of Energetic Materials, 2014, 22(3): 332-336.
[13]王俊峰. 5, 5'-联四唑-1, 1'-二氧二羟胺的合成工艺、结构表征及其性能研究[D]. 太原:中北大学, 2015.
WANG Jun-feng. Synthesis process, structure characterization and performance study of dihydroxylammonium 5,5'-bistetrazole-1,1'-diolate[D]. Taiyuan: North University of China, 2015.
[14]郝彩丽. TKX-50的合成工艺研究[D]. 太原:中北大学, 2016.
HAO Cai-li. Synthesis techniques optimization of TKX-50[D]. Taiyuan: North University of China, 2016.
[15]居平文, 凌亦飞, 谷玉凡, 等. TKX-50合成方法改进[J]. 含能材料, 2015, 23(9): 887-891.
JU Ping-wen, LING Yi-fei, GU Yu-fan, et al. Improved synthesis of TKX-50[J]. Chinese Journal of Energetic Materials, 2015, 23(9): 887-891.
[16]TIDEY J P, ZHUROV V V, GIANOPOULOS C G, et al. Experimental charge-density study of the intra- and intermolecular bonding in TKX-50[J]. The Journal of Physical Chemistry A, 2017, 121(46): 8962-8972.
[17]LU Zhi-peng, XUE Xiang-gui, ZHANG Chao-yang. A theoretical prediction on the shear-induced phase transformation of TKX-50[J]. Physical Chemistry Chemical Physics, 2017, 19(46): 31054-31062.
[18]LU Zhi-peng, XUE Xiang-gui, MENG Li-ya, et al. Heat-induced solid-solid phase transformation of TKX-50[J]. The Journal of Physical Chemistry C, 2017, 121(15): 8262-8271.
[19]余晨, 李苗, 李倩, 等. 新型含能材料TKX-50的力学性能研究[J].化学与生物工程, 2019, 36(8): 49-53.
YU Chen, LI Miao, LI qian, et al. Mechanical property of novel energetic material TKX-50[J]. Chemistry & Bioengineering, 2019, 36(8): 49-53.
[20]AN Qi, CHENG Tao, GODDARD III W, et al. Anisotropic impact sensitivity and shock induced plasticity of TKX-50(dihydroxylammonium 5,5'-bis(tetrazole)-1,1'-diolate)single crystals: from large-scale molecular dynamics simulations[J]. The Journal of Physical Chemistry C, 2015, 119(4): 2196-2207.
[21]ABRAHAM B M. High pressure structural behaviour of 5,5'-bitetrazole-1,1'-diolate based energetic materials: a comparative study from first principles calculations[J]. RSC Advances, 2020, 10(42): 24867-24876.
[22]MA Song, LI Ya-Jin, LI Yang, et al. Research on structures, mechanical properties, and mechanical responses of TKX-50 and TKX-50 based PBX with molecular dynamics[J]. Journal of Molecular Modeling, 2016, 22(2): 3-11.
[23]HAYCRAFT J J, STEVENS L L, ECKHARDT C J. The elastic constants and related properties of the energetic material cyclotrimethylene trinitramine(RDX)determined by brillouin scattering.[J]. The Journal of Chemical Physics, 2006, 124(2):1-11.
[24]STEVENS L L, ECKHARDT C J. The elastic constants and related properties of Β-HMX determined by brillouin scattering[J]. The Journal of Chemical Physics, 2005, 122(17): 174701-174708.
[25]马秀芳, 肖继军, 殷开梁, 等. TATB/聚三氟氯乙烯复合材料力学性能的MD模拟[J]. 化学物理学报(英文版), 2005, 18(1):55-58.
MA Xiu-fang, XIAO Ji-jun, YIN Kai-liang, et al. Molecular dynamics simulation on mechanical properties of TATB/PCTFE composite material[J]. Chinese Journal of Chemical Physics, 2005, 18(1):55-58.
[26]YU Yue-hai, CHEN Shu-sen, LI Xin, et al. Molecular dynamics simulations for 5,5'-bistetrazole-1,1'-diolate(TKX-50)and its PBXs[J]. RSC Advances, 2016, 6(24): 20034-20041.
[27]YU Chen, YANG Li, CHEN Hou-yang et al. [J]. Computational Materials Science, 2020,172:1-9.
[28]ZHAO Yu, XIE Wu-xi, QI Xiao-fei, et al. Comparison of the interfacial bonding interaction between GAP matrix and ionic/non-ionic explosive: computation simulation and experimental study[J]. Applied Surface Science, 2019, 497: 1-7.
[29]王俊峰, 杨云峰, 张春园, 等. 5,5'-联四唑-1,1'-二氧二羟胺的热分解动力学[J].火炸药学报, 2015, 38(2): 42-45.
WANG Jun-feng, YANG Yun-feng, ZHANG Chun-yuan, et al. Thermal decomposition reaction kinetics of dihydroxylammonium-5,5'- bistetrazole-1,1'-diolate[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2015, 38(2):42-45.
[30]NIU Hu, CHEN Shu-sen, JIN Shao-hua, et al. Preparation, nonisothermal decomposition kinetics, heat capacity, and safety parameters of TKX-50-based PBX[J]. Journal of Thermal Analysis and Calorimetry, 2017, 131(3): 3193-3199.
[31]HUANG Hai-feng, SHI Ya-meng, YANG Jun. Thermal characterization of the promising energetic material TKX-50[J]. Journal of Thermal Analysis and Calorimetry, 2015, 121(2): 705-709.
[32]SINDITSKII V P, FILATOV S A, KOLESOV V I, et al. Combustion behavior and physicochemical properties of dihydroxylammonium 5,5'-bistetrazole-1,1'-diolate(TKX-50)[J]. Thermochimica Acta, 2015, 614: 85-92.
[33]YUAN Bing, YU Zi-jun, BERNSTEIN E R, et al. Initial mechanisms for the decomposition of electronically excited energetic salts: TKX-50 and MAD-X1[J]. The Journal of Physical Chemistry A, 2015, 119(12): 2965-81.
[34]ZHAO Chuan-de, CHI Yu, XIONG Ying, et al. The effects of H+, NH3OH+ and NH+4 on the thermal decomposition of bistetrazole N-oxide anion[J]. Physical Chemistry Chemical Physics, 2019, 21(27): 15215-15221.
[35]张坤, 陶俊, 冯晓军, 等. HATO及其特征基团的热分解特性[J]. 火炸药学报, 2020, 43(5): 510-515.
ZHANG Kun, TAO Jun, FENG Xiao-jun, et al. Thermal decomposition characteristics of HATO and its characteristic groups[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2020, 43(5): 510-515.
[36]张坤, 陶俊, 王晓峰, 等. AP对HATO热分解影响的机制[J]. 含能材料, 2019, 27(11): 908-914.
ZHANG Kun, TAO Jun, WANG Xiao-Feng, et al. Effect of AP on the thermal decomposition mechanism of HATO[J]. Chinese Journal of Energetic Materials, 2019, 27(11): 908-914.
[37]ZHAO Chuan-de, CHI Yu, YU Qian, et al. Comprehensive study of the interaction and mechanism between bistetrazole ionic salt and ammonium nitrate explosive in thermal decomposition[J]. The Journal of Physical Chemistry C, 2019, 123(45): 27286-27294.
[38]ZHANG Ming, ZHAO Feng-qi, YANG Yan-jing, et al. Synthesis, characterization and catalytic behavior of MFe2O4(M=Ni, Zn and Co)nanoparticles on the thermal decomposition of TKX-50[J]. Journal of Thermal Analysis and Calorimetry, 2019, 141(4): 1413-1423.
[39]张建侃, 赵凤起, 徐司雨, 等. 两种Fe2O3@rGO纳米复合物的制备及其对TKX-50热分解的影响[J]. 含能材料, 2017, 25(7): 564-569.
ZHANG Jian-kan, ZHAO Feng-qi, XU Si-yu, et al. Preparation of Fe2O3@rGO nanocomposites and their effect on the thermal decomposition of TKX-50[J]. Chinese Journal of Energetic Materials, 2017, 25(7): 564-569.
[40]ZHANG Jian-kan, ZHAO Feng-qi, YANG Yan-jing, et al. Enhanced catalytic performance on the thermal decomposition of TKX-50 by Fe3O4 nanoparticles highly dispersed on rGO[J]. Journal of Thermal Analysis and Calorimetry, 2019, 140(4): 1759-1767.
[41]HU Li-shuang, LIU Yang, HU Shuang-qi, et al. 1T/2H multi-phase MoS2 heterostructures: synthesis, characterization and thermal catalysis decomposition of dihydroxylammonium 5,5'-bistetrazole-1,1'-diolate[J]. New Journal of Chemistry, 2019, 43(26): 10434-10441.
[42]XU Ya-bei, TAN Ying-xin, CAO Wei-guo, et al. Thermal decomposition characteristics and thermal safety of dihydroxylammonium 5,5'-bistetrazole-1,1'-diolate based on microcalorimetric experiment and decoupling method[J]. The Journal of Physical Chemistry C, 2020, 124(11): 5987-5998.
[43]米向超. 新型高能炸药TKX-50的结晶研究[D]. 太原:中北大学, 2015.
MI Xiang-chao. Research on the crystallization of the new high explosive TKX-50[D]. Taiyuan: North University of China, 2015.
[44]任晓婷, 张国涛, 何金选, 等. 1,1'-二羟基-5,5'-联四唑二羟胺盐的晶形计算及控制[J].火炸药学报, 2016, 39(2): 68-71.
REN Xiao-ting, ZHANG Guo-tao, HE Jin-xuan, et al. Calculation and control of crystal morphology of dihydroxylammonium 5,5'-bistetrazole-1,1'-diolate[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2016, 39(2): 68-71.
[45]许诚, 毕福强, 张敏, 等. 1,1'-二羟基-5,5'-联四唑二羟胺盐及碱金属盐的合成、溶解度测定及关联[J].含能材料, 2015, 23(3): 208-212.
XU Cheng, BI Fu-qiang, ZHANG Min, et al. Synthesis, measurement and correlation of solubility of dihydroxylammonium and alkali metal salts of 5,5'-bistetrazole-1,1'-diolate[J]. Chinese Journal of Energetic Materials, 2015, 23(3): 208-212.
[46]DENG Peng, JIAO Qing-jie, REN Hui. Nano dihydroxylammonium 5,5'-bistetrazole-1,1'-diolate(TKX-50)sensitized by the liquid medium evaporation-induced agglomeration self-assembly[J]. Journal of Energetic Materials, 2019, 38(3): 253-260.
[47]黎博, 刘巧娥, 高向东, 等. 机械球磨法制备纳米HATO及其性能测试[J]. 火炸药学报, 2019, 42(1): 105-110.
LI Bo, LIU Qiao-e, GAO Xiang-dong, et al. Preparation of nano-HATO by mechanical milling method and its performance test[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2019, 42(1): 105-110.
[48]XIONG Shu-lin, CHEN Shu-sen, JIN Shao-hua. Molecular dynamic simulations on TKX-50/RDX cocrystal[J]. Journal of Molecular Graphics and Modelling, 2017, 74: 171-176.
[49]XIAO Lei, GUO Shuang-feng, SU Hong-ping, et al. Preparation and characteristics of a novel PETN/TKX-50 co-crystal by a solvent/non-solvent method[J]. RSC Advances, 2019, 9(16): 9204-9210.
[50]屈晨曦, 葛忠学, 张敏, 等. CL-20/HATO复合物的制备、表征及性能[J]. 含能材料, 2018, 26(10): 850-855.
QU Chen-xi, GE Zhong-xue, ZHANG Min, et al. Preparation, characterization and properties of CL-20/HATO composite[J]. Chinese Journal of Energetic Materials, 2018, 26(10): 850-855.
[51]毕福强, 葛忠学, 孙序东, 等. 1,1'-二羟基-5,5'-联四唑二羟胺盐和CMDB推进剂组份的相容性[J]. 含能材料, 2014, 22(5): 716-718.
BI Fu-qiang, GE Zhong-xue, SUN Xu-dong, et al. Compatibility of dihydroxylammonium 5,5'-bistetrazole-1,1'-diolate with components of CMDB propellant[J]. Chinese Journal of Energetic Materials, 2014, 22(5): 716-718.
[52]HUANG Hai-feng, SHI Ya-meng, YANG Jun, et al. Compatibility study of dihydroxylammonium 5,5'-bistetrazole-1,1'-diolate(TKX-50)with some energetic materials and inert materials[J]. Journal of Energetic Materials, 2014, 33(1): 66-72.
[53]BEACH N E, CANFIELD V K. Compatibility of explosives with polymers(III)[J]. Plastic Report, 1971, 40: 73-76.
[54]佚名. 化学计量[M]. 北京: 原子能出版社, 2002: 517-613.
[55]GOTTFRIED J L, KLAPÖTKE T M, WITKOWSKI T G. Estimated detonation velocities for TKX-50, MAD-X1, BDNAPM, BTNPM, TKX-55, and DAAF using the laser induced air shock from energetic materials technique[J]. Propellants, Explosives, Pyrotechnics, 2017, 42(4): 353-359.
[56]ABRAHAM B M, GHULE V D, VAITHEESWARAN G. A comparative study of the structure, stability and energetic performance of 5,5'-bitetrazole-1,1'-diolate based energetic ionic salts: future high energy density materials[J]. Physical Chemistry Chemical Physics, 2018, 20(47): 29693-29707.
[57]XING Xiao-ling, ZHAO Sheng-xiang, ZHANG Wei-peng, et al. The detonation properties research on TKX-50 in high explosives[J]. Propellants, Explosives, Pyrotechnics, 2019, 44(4): 408-412.
[58]刘佳辉, 范桂娟, 卢校军, 等. TKX-50基混合炸药的爆轰及安全性能[J]. 含能材料, 2019, 27(11): 902-907.
LIU Jia-hui, FAN Gui-juan, LU Xiao-jun, et al. Detonation and safety performance of TKX-50 based PBX[J]. Chinese Journal of Energetic Materials, 2019, 27(11): 902-907.
[59]YU Yue-hai, CHEN Shu-sen, LI Tu-juan, et al. Study on a novel high energetic and insensitive munitions formulation: TKX-50 based melt cast high explosive[J]. RSC Advances, 2017, 7(50): 31485-31492.
[60]KLAPÖTKE T M, WITKOWSKI T G, WILK Z, et al. Determination of the initiating capability of detonators containing TKX-50, MAD-X1, PETNC, DAAF, RDX, HMX or PETN as a base charge, by underwater explosion test[J]. Propellants, Explosives, Pyrotechnics, 2016, 41(1): 92-97.
[61]ZHAO Chuan-de, CHI Yu, PENG Qiang, et al. A study on the comprehension of differences in specific kinetic energy of TKX-50 and HMX from the perspective of gas products[J]. Physical Chemistry Chemical Physics, 2019, 21(12): 6600-6605.
[62]毕福强, 付小龙, 邵重斌, 等. 高能单元推进剂TKX-50能量特性计算研究[J]. 化学推进剂与高分子材料, 2013, 11(5): 70-73.
BI Fu-qiang, FU Xiao-long, SHAO Chong-bin, et al. Calculation of energy characteristics of high energy monopropellant TKX-50[J]. Chemical Propellants & Polymeric Materials, 2013, 11(5):70-73.
[63]李猛, 赵凤起, 罗阳,等. 含5,5'-联四唑-1,1'-二氧二羟铵推进剂的能量特性计算[J]. 含能材料, 2014, 22(3): 286-290.
LI Meng, ZHAO Feng-qi, LUO Yang, et al. Energetic characteristics computation of propellants containing dihydroxylammonium 5,5'-bistetrazoIe-1,1'-diolate(TKX-50)[J]. Chinese Journal of Energetic Materials, 2014, 22(3): 286-290.
[64]刘佳, 程山, 孙丽娜, 等. 含TKX-50推进剂能量性能及特征信号研究[J]. 化学推进剂与高分子材料, 2019, 17(2): 79-81.
LIU Jia, CHEN Shan, SUN Li-na, et al. Study on energy performance and characteristic signal of propellant containing TKX-50[J]. Chemical Propellants & Polymeric Materials, 2019, 17(2): 79-81.
[65]郑亚峰, 常海, 刘子如,等. RDX和铝含量对RDX基含铝炸药热爆发温度的影响[J]. 火炸药学报, 2011, 34(4):49-51.
ZHENG Ya-feng, CHANG Hai, LIU Zi-ru, et al. Effect of RDX and Al contents on the heat explosion temperature for RDX-based aluminized explosives[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2011, 34(4):49-51.
[66]孙银双, 黄鑫, 黄忠. LLM-105炸药粒度及形貌对机械感度的影响[J]. 四川化工, 2017, 20(1):34-40.
SUN Yin-shuang, HUANG Xin, HUANG Zhong. Particle diameter and morphology of LLM-105 explosives: their influences on mechanical sensitiveness[J]. Sichuan Chemical Industry, 2017, 20(1): 34-40.
[67]马秀芳, 肖继军, 殷开梁, 等. TATB/聚三氟氯乙烯复合材料力学性能的MD模拟[J]. 化学物理学报(英文版), 2005, 18(1):55-58.
MA Xiu-fang, XIAO Ji-jun, YIN Kai-liang, et al. Molecular dynamics simulation on mechanical properties of TATB/PCTFE composite material[J]. Chinese Journal of Chemical Physics, 2005, 18(1): 55-58.
[68]NIU Hu, CHEN Shu-sen, SHU Qing-hai, et al. Preparation, characterization and thermal risk evaluation of dihydroxylammonium 5,5'-bistetrazole-1,1'-diolate based polymer bonded explosive[J]. Journal of Hazardous Materials, 2017, 338: 208-217.
[69]王浩, 高杰, 陶俊, 等. DNTF/HATO混合体系安全性及分子动力学模拟[J]. 含能材料, 2019, 27(11): 897-901.
WANG Hao, GAO Jie, TAO Jun, et al. Safety performances and molecular dynamics simulation of DNTF/HATO[J]. Chinese Journal of Energetic Materials, 2019, 27(11): 897-901.
PDF(1757 KB)

17

Accesses

0

Citation

Detail

Sections
Recommended

/