Preparation and Thermal Decomposition Characteristics of TKX-50/GO Composite Energetic Materials

WANG Hua-yu,CAO Xiong,WU Jing-li,XU Ya-bei,SHANG Yi-ping

PDF(743 KB)
  • Sponsored by:

    Editor-In-Chief:

    ISSN 1007-7812

     
  • Hosted By:

    Published By: Chinese Journal of Explosives & Propellants

    CN 61-1310/TJ

PDF(743 KB)
Chinese Journal of Explosives & Propellants ›› 2020, Vol. 43 ›› Issue (6) : 631-635. DOI: 10.14077/j.issn.1007-7812.201908021

Preparation and Thermal Decomposition Characteristics of TKX-50/GO Composite Energetic Materials

  • WANG Hua-yu,CAO Xiong,WU Jing-li,XU Ya-bei,SHANG Yi-ping
Author information +
History +

Abstract

In order to study the thermal decomposition properties of 5,5'-bistetrazole-1,1'-diolate(TKX-50)/graphene oxide(GO)nano-composite energetic materials, liquid nitrogen-assisted spray freeze-drying method was used to prepare TKX-50/GO composite materials. The morphology, structure and surface element of the samples were characterized and analyzed by using the scanning electron microscopy-energy spectroscopy(SEM-EDS)and X-ray diffraction(XRD). The thermal decomposition properties of composites were analyzed by using the thermogravimetry-differential scanning calorimetry(TG-DSC). The apparent activation energy was calculated by using the Kissinger method. The results show that the TKX-50/GO composite prepared by liquid nitrogen-assisted freeze spray drying method has nano-scale layered network structure. Compared to the TKX-50, the first stage decomposition peak temperature of TKX-50/GO composite energetic material decreases by 12.0, 12.5 and 12.2℃, and the second stage decomposition peak temperature decreases by 12.5℃ and 16.4℃. With the increase of GO content, the decomposition peak in the second stage is not obvious, and the two decomposition stages of TKX-50/GO5 are overlapped. The apparent activation energy of the nano-composite materials increases from 146.2kJ/mol to 163.3, 168.5 and 172.9kJ/mol compared to the TKX-50, respectively. GO improves the activation energy barrier of the composite energetic material, decreases the decomposition peak temperature and shortens the reaction interval time, so the GO improves the energy release rates and promotes the thermal decomposition of TKX-50/GO composite materials.

Key words

physical chemistry / graphene oxide(GO) / 5,5'-bistetrazole-1,1'-diolate / TKX-50 / network-like nanostructures / composite energetic material / thermal decomposition

Cite this article

Download Citations
WANG Hua-yu,CAO Xiong,WU Jing-li,XU Ya-bei,SHANG Yi-ping. Preparation and Thermal Decomposition Characteristics of TKX-50/GO Composite Energetic Materials. Chinese Journal of Explosives & Propellants. 2020, 43(6): 631-635 https://doi.org/10.14077/j.issn.1007-7812.201908021

References

[1] FISCHER N, FISCHER D, KLAPÖTKE T M, et al. Pushing the limits of energetic materials-the synthesis and characterization of dihydroxylammoniumm 5,5 '-bistetrazole-1,1'-diola-te[J]. Journal of Materials Chemistry, 2012, 22(38): 20418-20422.
[2]苗成才, 吉应旭, 钱露, 等. 新型联四唑类含能材料TKX-50的研究进展[J]. 化学推进剂与高分子材料, 2015, 13(5):7-12. MIAO Cheng-cai, JI Ying-xu, QIAN Lu, et al. Researchprogress of novel bistetrazole-type energetic material TKX-50[J]. Chemical Propellants & Polymeric Materials, 2015, 13(5):7-12.
[3]朱周朔, 姜振明, 王鹏程, 等. 5,5'-联四唑-1,1'-二氧二羟铵的合成及其性能[J]. 含能材料, 2014, 22(3): 332-336. ZHU Zhou-shuo, JIANG Zhen-ming, WANG Peng-cheng,et al. Synthesis and properties of dihydroxylammonium 5,5'-bistetrazole-1,1'-diolate[J]. Chinese Journal of Energe-tic Materials, 2014, 22(3): 332-336.
[4]DANIEL R D, SUNGJIN P, CHRISTOPHER W B, et al. The chemistry of graphene oxide[J]. Chemical Society Reviews, 2010, 39(1): 228-240.
[5]KRISHNAN D, KIM F, LUO J Y, et al. Energetic graphene oxide: challenges and opportunities[J]. Nano Today, 2012, 7(2): 137-152.
[6]YANG G W, XU C L, LI H L. Electrodeposited nickel hy-droxide on nickel foam with ultrahigh capacitance[J]. Chemical Communications, 2008(48): 6537-6539.
[7]KOU L, GAO C. Making silica nanoparticle-covered graphene oxide nanohybrids as general building blocks for lar-ge-area superhydrophilic coatings[J]. Nanoscale, 2011, 3(2): 519-528.
[8]DAVE S H, GONG C C, ROBERTSON A W, et al. Ch-emistryand structure of graphene oxide via direct imagin-g[J]. ACS Nano, 2016, 10(8): 7515-7522.
[9]LI Y, ALAIN-RIZZO V, GALMICHE L, et al. Functionalizationof graphene oxide by tetrazine derivatives:a vers-atile approach toward covalent bridges between graphene sheets[J]. Chemistry of Materials, 2015, 27(12): 4298-4310.
[10]YAN Q L, GOZIN M, ZHAO F Q, et al. Highly energ-etic compositions based on functionalized carbon nanom-aterials[J]. Nanoscale, 2016, 8(9): 4799-4851.
[11]McCRARY P D, BEASLEY P A, ALANIZ S A, et al.Graphene and graphene oxide can "lubricate" ionic liqui-ds based on specific surface interactions leading to impr-oved low temperature hypergolic performance[J]. Angew-andte Chemie-International Edition, 2012, 51(9): 9784-9787.
[12]YUAN B, YU Z J, BERNSTEIN E R. Initial mechanisms forthe decomposition of electronically excited energ-etic salts: TKX-50 and MAD-X1[J]. Journal of Physical Chemistry A, 2015, 119(12): 2965-2981.
[13]JIA J H, LIU Y, HUANG S L. Crystal structure transfo-rmation and step-by-step thermal decomposition behavior ofdihydroxylammonium 5,5'-bistetrazole-1,1'-diolate[J]. RSC Advances, 2017, 7(77): 49105-49113.
[14]HUANG H F, SHI Y M, YANG J, et al. Compatibility study of dihydroxylammonium 5,5'-bistetrazole-1,1'-diolate(TKX-50)with some energetic materials and inert materials[J]. Journal of Energetic Materials, 2015, 33(1):66-72.
[15]HUANG H F, SHI Y M, YANG J. Thermal characterizationof the promising energetic material TKX-50[J]. Journal of Thermal Analysis and Calorimetry, 2015, 121(2): 705-709.
[16]LU Z P, XUE X G, MENG L Y, et al. Heat-Induced solid-solid phase transformation of TKX-50[J]. Journal of Physical Chemistry C, 2017, 121(15): 8262-8271.
[17]XIAO L B, ZHAO F Q, LUO Y, et al. Thermal behavior and safety of dihydroxylammonium 5,5'-bistetrazole-1,1'-diolate[J]. Journal of Thermal Analysis and Calorimetry,2016, 123(1): 653-657.
[18]曹雄, 杨丽媛, 王华煜, 等. 快速冷冻干燥法制备网络纳米结构TKX-50的热分解和燃烧特性[J]. 含能材料, 2018,26(12): 1044-1048. CAO Xiong, YANG Li-yuan, WANG Hua-yu, et al. The-rmal decomposition and combustion characteristics of TKX-50 with network nanostructure fabricated by rapid fre-eze-drying method[J]. Chinese Journal of Energetic Materials, 2018,26(12): 1044-1048.
[19]DREGER Z A, STASH A I, YU Z G, et al. High-pressure structural response of an insensitive energetic crystal: dihydroxylammonium 5,5'-bistetrazole-1,1'-diolate(TKX-50)[J]. Journal of Physical Chemistry C, 2017, 121(10): 5761-5767.
[20]DREGER Z A, BRESHIKE C J, GUPTA Y M. High pressure-high temperature phase diagram of an energetic crystal: dihydroxylammonium 5,5'-bistetrazole-1,1'-diolate(TKX-50)[J]. Chemical Physics Letters, 2017, 697: 212-218.
[21]MA S, LI Y J, LI Y, et al. Research on structures, me-chanical properties, and mechanical responses of TKX-50 and TKX-50 based PBX with molecular dynamics[J]. Jo-urnal of Molecular Modeling, 2016, 22(2): 43.
[22]NIU H, CHEN S S, JIN S H, et al. Preparation, noniso-thermal decomposition kinetics, heat capacity, and safety parameters of TKX-50-based PBX[J]. Journal of Therm-alAnalysis and Calorimetry, 2018, 131(3): 3193-3199.
[23]WANG J F, CHEN S S, YAO Q, et al. Preparation, characterization, thermal evaluation and sensitivities of TKX-50/GO composite[J]. Propellants, Explosives, Pyrotech-nics,2017, 42(9): 1104-1110.
[24]ZHOU M N, CHEN S S, WANG D X, et al. A comparative study of performance between TKX-50-based composite explosives and other composite explosives[J]. Journal of Energetic Materials, 2019, 37(2): 162-173.
[25]HUANG B, QIAO Z Q, NIE F D, et al. Fabrication of FOX-7 quasi-three-dimensional grids of one-dimensional nanostructures via a spray freeze-drying technique and size-dependence of thermal properties[J]. Journal of Hazardous Materials, 2010, 184: 561-566.
[26]HUANG B, CAO M H, NIE F D, et al. Construction and properties of structure-and size-controlled micro/nano-energetic materials[J]. Defence Technology, 2013, 9(2): 59-79.
[27]KISSINGER H E. Variation of peak temperature with heating rate in differential thermal analysis[J]. Journal of Research of the National Bureau of Standards, 1956, 57: 217-221.
PDF(743 KB)

Collection(s)

Energetic material

14

Accesses

0

Citation

Detail

Sections
Recommended

/