Thermal Decomposition Kinetics of 3-Amino-4-nitrosofurazan

ZHANG Ming-yan1, CHEN Li-ping1, WU Wen-qian1, WANG Shun-yao2,CHEN Wang-hua1

PDF(839 KB)
  • Sponsored by:

    Editor-In-Chief:

    ISSN 1007-7812

     
  • Hosted By:

    Published By: Chinese Journal of Explosives & Propellants

    CN 61-1310/TJ

PDF(839 KB)
Chinese Journal of Explosives & Propellants ›› 2020, Vol. 43 ›› Issue (5) : 516-520. DOI: 10.14077/j.issn.1007-7812.201908017

Thermal Decomposition Kinetics of 3-Amino-4-nitrosofurazan

  • ZHANG Ming-yan1, CHEN Li-ping1, WU Wen-qian1, WANG Shun-yao2,CHEN Wang-hua1
Author information +
History +

Abstract

To study the thermal stability of 3-amino-4-nitrosofurazan(ANSF), the thermal decomposition characteristics of ANSF were studied by differential scanning calorimetry(DSC)at different heating rates under isothermal conditions. The decomposition reaction kinetic parameters were calculated by model-free method and model-based method. The dynamic test results show that the onset temperature of ANSF is very low and the heat release is very large. The average specific heat release is up to 2945J/g. The isothermal DSC curves show that the decomposition of ANSF is autocatalytic both at liquid and solid phase. The activition energy obtained by model-free method changes obviously with the conversion rate, indicating that the decomposition reaction is complex and can't be described by a single step mechanism. The apparent activation energy of the initial stage and autocatalytic stage calculated by simplified Benito-Perez model are 114.75kJ/mol and 109.02kJ/mol, respectively. ANSF has poor thermal stability and the decomposition is autocatalytic both at solid and liquid phase with low activation energy.

Key words

physical chemistry / 3-amino-4-nitrosofurazan / ANSF / autocatalytic / thermal decomposition / model-based kinetics

Cite this article

Download Citations
ZHANG Ming-yan1, CHEN Li-ping1, WU Wen-qian1, WANG Shun-yao2,CHEN Wang-hua1. Thermal Decomposition Kinetics of 3-Amino-4-nitrosofurazan. Chinese Journal of Explosives & Propellants. 2020, 43(5): 516-520 https://doi.org/10.14077/j.issn.1007-7812.201908017

References

[1] 柳沛宏, 曹端林, 王建龙,等. 3,4-二氨基呋咱及其高能量密度衍生物合成研究进展[J]. 化工进展,2015, 34(5): 1357-1364.
LIU Pei-hong,CAO Duan-lin, WANG Jian-long,et al. Progress of synthesis of 3,4-diaminofurazan and high energy density derivatives[J]. Chemical Industry and Engineering Progress, 2015, 34(5): 1357-1364.
[2]SHEREMETEV A B. ChemInform abstract: Chemistry of furazans fused to five-membered rings[J]. Cheminform, 2010,DOI:10.1002/chin.199537303.
[3]王彬, 周彦水, 吴敏杰,等. 3-氨基-4-偕氨肟基呋咱及其含能衍生物合成研究进展[J]. 火炸药学报, 2018, 41(3): 213-222.
WANG Bin, ZHOU Yan-shui, WU Min-jie, et al. Research progress on synthesis of 3-amino-4-aminoximiofurazan and its energetic derivatives[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2018, 41(3): 213-222.
[4]林智辉, 高莉, 李敏霞,等. 几种呋咱类含能化合物的合成、热行为及理论爆轰性能预估[J]. 火炸药学报, 2014, 37(3): 6-10.
LIN Zhi-hui, GAO Li, LI Min-xia, et al. Synthesis, thermal behavior and prediction of theoretical detonation performance for some energetic compounds derived from furazan[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2014,37(3): 6-10.
[5] 张志忠, 王伯周, 姬月萍, 等. 部分新型高能量密度材料的国内研究进展[J]. 火炸药学报, 2008, 31(2): 93-101.
ZHANG Zhi-zhong, WANG Bo-zhou, JI Yue-ping, et al. Study progress of seVeral high energy density materials(HEDM)[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2008, 31(2): 93-101.
[6]MEI'NIKOVA T M, NOVIKOVA T S, KHMEL'NITSKII L I,et al. Novel synthesis of 3,4-dicyanofuroxan[J]. Mendeleev Communications, 2001, 11(1): 30-31.
[7]霍冀川, 吴瑞荣, 舒远杰, 等. 氮杂环类含能材料热分解研究进展[J]. 爆破,2007, 24(4): 21-25.
HUO Ji-chuan, WU Rui-rong, SHU Yuan-jie, et al. Ivestigative Development of thermal decomposition of zaohetercycune energetic materials[J]. Blasting, 2007, 24(4): 21-25.
[8]KOHSARI S M I, POURMORTAZAVI, HAJIMIRSADEGHI S S. Non-isothermal kinetic study of the thermal decomposition of diaminoglyoxime and diaminofurazan[J]. Journal of Thermal Analysis and Calorimetry, 2007, 89(2): 543-546.
[9]李战雄. 几种呋咱含能衍生物的性能研究[J]. 含能材料,2005, 13(2): 90-93.
LI Zhan-xiong. Properties of some furazan energetic compounds[J]. Chinese Journal of Energetic Materials, 2005, 13(2): 90-93.
[10]张君启, 张炜, 朱慧, 等. 含呋咱衍生物富燃料推进剂的能量性能[J]. 火炸药学报, 2006, 29(4): 36-40.
ZHANG Jun-qi, ZHANG Wei, ZHU Hui, et al. The energy properties of fuel-rich propellants comprising furazan derivatives[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2006, 29(4): 36-40.
[11]WILLIAMS G K, BRILL T B. Thermal decomposition of energetic materials 72: Unusual behavior of substituted furazan compounds upon flash pyrolysis[J]. Combustion and Flame, 1998,114: 569-576.
[12]ZHAO Feng-qi, CHEN Pei, HU Rong-zu, et al. Thermochemical properties and non-isothermal decomposition reaction kinetics of 3,4-dinitrofurazanfuroxan(DNTF)[J]. Journal of Hazardous Materials, 2004, 113(1-3): 67-71.
[13]LAI Wei-Peng, LIAN Peng, YU Tao, et al. Theoretical study on the structure and stability of [1,2,5] oxadiazolo [3,4-e][1,2,3,4]-tetrazine-4,6-Di-N-dioxide(FTDO)[J]. Journal of Molecular Modeling, 2014, 20(7): 2343-2353.
[14]LI Xiang-zhi, WANG Bo-zhou, LI Hui, et al. Novel synthetic route and characterization of [1,2,5]oxadiazolo- [3,4-e][1,2,3,4]tetrazine 4,6-Di-N-oxide(FTDO)[J]. Chinese Journal of Organic Chemistry, 2012, 32(10): 1975.
[15]董琳琳, 张光全, 池钰, 等. 呋咱并[3,4-e]-1,2,3,4-四嗪-1,3-二氧化物(FTDO)的合成[J]. 含能材料, 2012, 20(6): 690-692.
DONG Lin-lin, ZHANG Guang-quan, CHI Yu, et al. Synthesis of furazano[3,4-e]-1,2,3,4-tetrazine-1,3-dioxide[J]. Chinese Journal of Energetic Materials, 2012, 20(6): 690-692.
[16]张君启. 呋咱类高氮化合物分子设计、合成及应用研究[D]. 长沙: 国防科学技术大学, 2016.
ZHANG Jun-qi.Study on molecular design, synthesis and application of furazan compounds[D].Changsha: National University of Defense Technology, 2016.
[17]薛蓓蓓. 物质分解自催化特性鉴别方法与应用研究[D]. 南京: 南京理工大学, 2018.
XUE Bei-bei. Identification methods and application of the autocatalysis of material decompositions[D].Nanjing: Nanjing University of Science and Technology, 2018.
[18]VYAZOVKIN S, ALAN B K. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data[J]. Thermochimica Acta, 2011, 520(1/2): 1-19.
[19]MACEHENWSKI M. Computational aspects of kinetic analysis. Part B.The ICTAC Kinetics project - the decomposition kinetics of calcium carbonate revisited, or some tips on survival in the kinetic minefield [J]. Thermochimica Acta, 2000, 355: 145-154.
[20]LI Yan-feng, WANG Xiao-feng. Hermetic thermal behavior of 3,4-diaminofurazan(DAF)[J]. Propellants,Explosives,Pyrotechnics, 2016, 41(5): 888-892.
[21]GAN Xiao-Yu, YANG Sen, WANG Shun-yao, et al. Thermal behavior of benzoyl peroxide mixed with NaOH solution[J].Thermochimica Acta, 2018, 670: 13-17.
PDF(839 KB)

11

Accesses

0

Citation

Detail

Sections
Recommended

/