Synthesis and Thermal Decomposition Behavior of Zr(BHT)2 High Energy Insensitive Combustion Catalyst

CUI Zi-xiang, GAN Jun-zhen, FAN Jie, ZHAO Feng-qi, XUE Yong-qiang, XIAO Li-bai

PDF(1535 KB)
  • Sponsored by:

    Editor-In-Chief:

    ISSN 1007-7812

     
  • Hosted By:

    Published By: Chinese Journal of Explosives & Propellants

    CN 61-1310/TJ

PDF(1535 KB)
Chinese Journal of Explosives & Propellants ›› 2018, Vol. 41 ›› Issue (2) : 165-172. DOI: 10.14077/j.issn.1007-7812.2018.02.011

Synthesis and Thermal Decomposition Behavior of Zr(BHT)2 High Energy Insensitive Combustion Catalyst

  • CUI Zi-xiang, GAN Jun-zhen, FAN Jie, ZHAO Feng-qi, XUE Yong-qiang, XIAO Li-bai
Author information +
History +

Abstract

High energy insensitive combustion catalyst Zr(BHT)2 was synthesized by complexing-precipitate method using dichloro ethylene dioxime, dimethylformamide, sodium azide, hydroxylamine hydrochloride and zirconium nitrate as raw materials. The thermal decomposition properties of Zr(BHT)2 were studied by differential scanning calorimetry (DSC) and thermogravimetry (TG) at different heating rates. The apparent activation energies (EK and EO) and pre-exponential constant (Ak) were calculated by Ozawa’s method and Kissinger’s method. The kinetic parameters and mechanism function of thermal decomposition, thermal explosion temperature and thermodynamic parameters were obtained, and the impact sensitivity and friction sensitivity were measured. The results show that the apparent activation energies of Zr(BHT)2 by Ozawa and Kissinger’s method were 150.51 and 152.15 kJ/mol, respectively, and the thermal decomposition is in accordance with Avrami-Erofeev equation. The self-accelerating decomposition temperature and the critical temperature of thermal explosion are 497.63 and 530.71 K, respectively. The free energy of activation of thermal decomposition reaction (ΔG) is 122.04 kJ/mol, the enthalpy of activation (ΔH) is 147.88 kJ/mol, and entropy of activation (ΔS) is 50.27 J/mol. The sensitivity test results also show that Zr(BHT)2 combustion catalyst is insensitive to impact and friction, and the safety is relatively high.

Key words

combustion catalyst / Zr (BHT)2 / high energy insensitive / kinetics / thermodynamics / complexing-precipitate method

Cite this article

Download Citations
CUI Zi-xiang, GAN Jun-zhen, FAN Jie, ZHAO Feng-qi, XUE Yong-qiang, XIAO Li-bai. Synthesis and Thermal Decomposition Behavior of Zr(BHT)2 High Energy Insensitive Combustion Catalyst. Chinese Journal of Explosives & Propellants. 2018, 41(2): 165-172 https://doi.org/10.14077/j.issn.1007-7812.2018.02.011

References

[1] 董海山. 高能量密度材料的发展及对策[J]. 含能材料, 2004, 12(1):1-12. DONG Hai-shan. The development and countermeasure of high energy density materials[J]. Chinese Journal of Energetic Materials, 2004; 12(1):1-12.
[2] Li Yu-chuan, Cai Qi, Li Sheng-hua, ZHANG Cai, et al. 1, 1’-Azobis-1,2,3-triazole:a high-nitrogen compound with stable N8 structure and photochromism[J]. Journal of the American Chemical Society, 2010, 132:12172-12175.
[3] Jaidann M, Roy S, Abou-Rachid H, et al. A DFT theoretical study of heats of formation and detonation properties of nitrogen-rich explosives[J]. Journal of Hazardous Materials, 2010, 176(1):165-173.
[4] Sikder A K, Sikder N. A review of advanced high performance, insensitive and thermally stable energetic materials emerging for military and space applications[J]. Journal of Hazardous Materials, 2004, 112(1):1-15.
[5] You J S, Kang S C, Kweon S K, et al. Thermal decomposition kinetics of GAP ETPE/RDX-based solid propellant[J]. Thermochimica Acta, 2012, 537:51-56.
[6] Li N, Zhao F, Luo Y, et al. Dissolution properties of 3,6-bis(1H-1,2,3,4-tetrazol-5-yl-amino)-1,2,4,5-tetrazine in N-methyl pyrrolidone and dimethyl sulfoxide[J]. Journal of Solution Chemistry, 2014, 43(7):1250-1258.
[7] Li S H, Shi H G, Sun C H, et al. Synthesis and crystal structure of nitrogen-rich compound:2,5,20-triazido-1,10-azo-1,3,4-triazole[J]. J Therm Anal Calorim, 2009, 39:13-16.
[8] Klapötke T M, Piercey D G. 1,1’-Azobis(tetrazole):a highly energetic nitrogen-rich compound with a N10 chain[J]. Inorganic Chemistry, 2011, 50(7):2732-2734.
[9] Ghule V D, Jadhav P M, Tewari S P. Theoretical studies on nitrogen rich energetic azoles[J]. Journal of Molecular Modeling, 2011, 17(6):1507-1515.
[10] Loebbecke S, Schuppler H, Schweikert W. Thermal analysis of the extremely nitrogen-rich solids BTT and DAAT[J]. Journal of Thermal Analysis & Calorimetry, 2003, 72(2):453-463.
[11] Gao H, Shreeve J M. Azole-based energetic salts[J]. Chemical Reviews, 2011, 111(11):7377-436.
[12] 黄海丰, 周智明. 基于有机阴离子的含能离子盐研究进展[J]. 火炸药学报, 2012, 35(3):1-10. HUANG Hai-feng, ZHOU Zhi-ming. Based on organic anion can contain ionic salt research progress[J]. Chinese Journal of Explosives & Propellants (Huozhayao Xuebao), 2012, 35(3):1-10.
[13] Wang Y L, Zhao Q, Jian-Hua Y I. New progress of study on combustion catalysts used for solid rocket propellants[J]. Chinese Journal of Explosives & Propellants (Huozhayao Xuebao), 2012, 35(5):1-8.
[14] Song X D, Zhao F Q, Chen P. Advance on lead-free combustion catalysts for solid rocket propellant[J]. Energetic Materials, 2004.
[15] 张国涛, 周遵宁, 张同来,等. 固体推进剂含能催化剂研究进展[J]. 固体火箭技术, 2011,(3):319-323. ZHANG Guo-tao, ZHOU Zun-ning, ZHANG Tong-lai. Solid propellant containing catalyst research progress[J]. Journal of Solid Rocket Technology, 2011, (3):319-323.
[16] 毕福强, 樊学忠, 许诚,等. 1,1’-二羟基-5,5’-联四唑的合成及理论研究[J]. 火炸药学报, 2013, 36(4):22-25. BI Fu-qiang, FAN Xue-zhong, XU Cheng. 1, 1’-Dihydroxy -5,5’-al tetrazolium synthesis and theory research[J]. Chinese Journal of Explosives & Propellants (Huozhayao Xuebao), 2013, 36(4):22-25.
[17] 邓敏智, 杜恒, 赵凤起,等. 四唑类盐的制备及其在固体推进剂中的应用初探[J]. 固体火箭技术, 2003, 26(3):53-54. DENG Min-zhi, DU Heng, ZHAO Feng-qi, et al. Preparation of tetrazolium salt and its application in solid propellant[J]. Journal of Solid Rocket Technology, 2003, 26(3):53-54.
[18] 赵凤起, 陈沛, 李上文. 四唑类化合物的金属盐作为微烟推进剂燃烧催化剂的研究[J]. 兵工学报, 2004, 25(1):30-33. ZHAO Feng-qi, CHEN Pei, LI Shang-wen. Tetrazole compounds of metal salts as the smoke propellant combustion catalyst research[J]. Acta Armamentarii, 2004, 25(1):30-33.
[19] Boneberg F, Kirchner A, Klapötke T M, et al.A study of cyanotetrazole oxides and derivatives thereoy[J]. Chemistry-An Asian Journal, 2013, 8(1):148-159.
[20] Fischer D, Klapötke T M, Piercey D G,et a1.Synthe-sis of 5-aminotetrazole-1 N-oxide and its azo derivative:a key step in the development of new energetic materi als[J].Chemistry,2013,19(14):4602-4613.
[21] 柴玉萍, 张同来, 姚俊. 双四唑盐的合成及表征[J]. 固体火箭技术, 2007, 30(3):248-252. CHAI Yu-ping, ZHANG Tong-lai, YAO Jun. Synthesis and characterization of bitetrazole salts[J]. Journal of Solid Rocket Technology, 2007, 30(3):248-252.
[22] 王鹏程, 王杰群, 陆明,等. 1,1’-二羟基-5,5’-联四唑金属盐的制备及热分解动力学[J]. 含能材料, 2016, 24(6):538-543. WANG Peng-cheng, WANG Jie-qun,LU Ming, et al. A kinetic investigation of thermal decomposition of 1,1’-dihydroxy-5,5’-bitetrazole-based metal salts[J]. Chinese Journal of Energetic Materials, 2016, 24(6):538-543.
[23] 黄海丰, 杨军, 杨普,等. 四水合1,1’-二羟基-5,5’-联四唑钠盐的合成、晶体结构及性能[J]. 含能材料, 2014, 22(4):462-466. HUANG Hai-feng, YANG Jun, YANG Pu, et al. Synthesis, crystal structure and properties of sodium 5, 5’-bistetrazole-1, 1’-diolate tetrahydrate[J]. Chinese Journal of Energetic Materials, 2014, 22(4):462-466.
[24] 梁丽轩,周智明.钝感高能含能离子盐的研究进展[J]. 火炸药学报, 2014, 37(1):1-11. LIANG Li-xuan, ZHOU Zhi-ming. The research progress of insensitive high energy can contain ionic salt[J].Chinese Journal of Explosives & Propellants (Huozhayao Xuebao), 2014, 37(1):1-11.
[25] 张衡, 赵凤起, 张晓宏,等. 3-硝基邻苯二甲酸锆的制备及其对双基系推进剂的催化作用[J]. 火炸药学报, 2009, 32(1):1-4. ZHANG Heng, ZHAO Feng-qi, ZHANG Xiao-hong, et al. 3-Nitro phthalic acid preparation of zirconium and its catalysis on department of double-base propellant[J]. Chinese Journal of Explosives & Propellants (Huozhayao Xuebao), 2009, 32(1):1-4.
[26] 陈竚, 张佩, 张晓宏,等. ZrO2和ZrB2在螺压双基推进剂中的应用[J]. 含能材料, 2013, 21(1):53-56. CHEN Zhu, ZHANG Pei, ZHANG Xiao-hong. Application of ZrO2 and ZrB2 in screw extrusion double-based propellants[J]. Chinese Journal of Energetic Materials, 2013, 21(1):53-56.
[27] 赵廷兴, 田均均, 李磊,等. 5,5’-联四唑-1,1’-二氧二羟铵(TKX-50)50克量级制备放大工艺[J]. 含能材料, 2014(6):744-747. ZHAO Ting-xing, TIAN Jun-jun, LI Lei, et al. Up-sizing 50 grams-scale synthesis technology of dihydroxylammonium 5,5’-bistetrazole-1, 1’-diolate (TKX-50)[J]. Chinese Journal of Energetic Materials, 2014, 22(6):744-747.
[28] Fischer N, Izsák D, Klapötke T M, et al. Nitrogen——rich 5, 5’-bistetrazolates and their potential use in propellant systems:a comprehensive study[J]. Chemistry-A European Journal, 2012, 18(13):4051-4062.
[29] Ozawa T B. A new method of analyzing thermogravimetric data[J]. Bulletin of the Chemical Society of Japan, 1965, 38(11):1881-1886.
[30] Kissinger H E. Reaction kinetics in differential thermal analysis[J]. Analytical Chemistry, 1957, 29(11):1702-1706.
[31] 何志伟, 高大元, 刘祖亮. 2,6-二氨基-3,5-二硝基吡啶-1-氧化物及其黏结炸药的热分解动力学[J]. 火炸药学报, 2009, 32(2):32-36. HE Zhi-wei, GAO Da-yuan, LIU Zu-liang. Thermal decomposition kinetics of 2,6-diamino-3,5-dinitropyridine 1-oxide and its formulation explosives[J]. Chinese Journal of Explosives & Propellants (Huozhayao Xuebao), 2009, 32(2):32-36.
[32] 马晓明, 李斌栋, 吕春绪,等. 无氯TATB的合成及其热分解动力学[J]. 火炸药学报, 2009, 32(6):24-27. MA Xiao-ming, LI Bin-dong, Lü Chun-xu, et al. Synthesis and thermal decomposition kinetics of TATB without chloride[J]. Chinese Journal of Explosives & Propellants (Huozhayao Xuebao), 2009, 32(6):24-27.
[33] Sharp J H, Wentworth S A. Kinetic analysis of thermogravimetric data[J]. Analytical Chemistry, 1969, 41(14).
[34] Liu R, Yang L, Zhou Z, et al. Thermal stability and sensitivity of RDX-based aluminized explosives[J]. Journal of Thermal Analysis & Calorimetry, 2014, 115(2):1939-1948.
[35] Liu Y, Jiang Y T, Zhang T L, et al. Thermal kinetic performance and storage life analysis of a series of high-energy and green energetic materials[J]. Journal of Thermal Analysis & Calorimetry, 2015, 119(1):659-670.
[36] Yi J H, Zhao F Q, Wang B Z, et al. BTATz-HNIW-CMDB propellants:decomposition reaction kinetics and thermal safety[J]. Journal of Thermal Analysis & Calorimetry, 2014, 115(2):1227-1234.
[37] Xu K Z, Zuo X G, Zhang H, et al. Synthesis and thermal behavior of a new high-energy organic potassium saltK(AHDNE)[J]. Therm Anal Calorim, 2012,110:585-591.
[38] Zhang J Q, Ji T Z, Chao M, et al. Synthesis and thermal behaviors of 1,3-bis(4-aminophenoxy)benzene (TPER) and polyimide based on TPER and pyromellitic dianhydride[J]. Journal of Thermal Analysis & Calorimetry, 2013, 114(1):441-449.
PDF(1535 KB)

Accesses

Citation

Detail

Sections
Recommended

/