Study on Rheological Properties of HTPE/PCL Four-Component Propellant Slurry

YUAN Shen,ZHAO Yue,LUO Yun-jun

  • Sponsored by:

    Editor-In-Chief:

    ISSN 1007-7812

     
  • Hosted By:

    Published By: Chinese Journal of Explosives & Propellants

    CN 61-1310/TJ

Chinese Journal of Explosives & Propellants ›› 2021, Vol. 44 ›› Issue (预出版) : 1-1. DOI: 10.14077/ j.issn.1007-7812.202012009

Study on Rheological Properties of HTPE/PCL Four-Component Propellant Slurry

  • YUAN Shen1,2,ZHAO Yue1,2,LUO Yun-jun 1,2
Author information +
History +

Abstract

To study the rheological behaviors after introducing PCL to the propellant formulation, the rheometer was used to compare the rheological properties of HTPE and HTPE/PCL four-component propellant slurries under different temperatures and shear rates, and the process parameters were optimized. The results show that the shear stress and shear rate of HTPE and HTPE/PCL propellant slurries increase exponentially, and their apparent viscosities present the flow characteristics of shear thinning of pseudoplastic fluid, respectively. Increasing temperature can reduce the shear stress, apparent viscosity and viscosity coefficient, and increase the shear rate index. The flow activation energy of HTPE/PCL propellant slurry is 3.90×104 kJ/mol, which is more sensitive to temperatures. The introduction of PCL has no significant effect on the process performance of HTPE/PCL propellant slurry, its best process temperature is 50℃to 60℃, and the pot life is 270 min to 329 min.

Key words

wide temperature range / HTPE/PCL propellant / rheological properties / process performances

Cite this article

Download Citations
YUAN Shen,ZHAO Yue,LUO Yun-jun.

Study on Rheological Properties of HTPE/PCL Four-Component Propellant Slurry

. Chinese Journal of Explosives & Propellants. 2021, 44(预出版): 1-1 https://doi.org/10.14077/ j.issn.1007-7812.202012009

References

[1]     Chen K, Wen X, Li G, et al. Improvement of mechanical properties of in situ-prepared HTPE binder in propellants[J]. RSC Advances. 2020, 10(50): 30150-30161.

[2]     汪存东, 罗运军, 夏敏. HTPE的合成及弹性体的性能[J]. 含能材料, 2011, 19(5): 518-522.

WANG Cun-dong, LUO Yun-jun, XIA Min. Synthesis of HTPE and properties of HTPE elastomers[J]. Chinese Journal of Energetic Materials. 2011, 19(5): 518-522.

[3]     Wen X, Zhang G, Chen K, et al. Enhancing the performance of an HTPE binder by adding a novel hyperbranched multi-arm azide copolyether[J]. Propellants Explosives Pyrotechnics. 2020, 45(7): 1065-1075.

[4]     宋晓庆, 周集义, 王文浩, 等. HTPE推进剂研究进展[J]. 含能材料. 2008, 16(3): 349-352.

SONG Xiao-qing, ZHOU Ji-yi, WANG Wen-hao, et al. Review on HTPE propellants[J]. Chinese Journal of Energetic Materials. 2008, 16(3): 349-352.

[5]     张琼方, 张教强. 钝感固体推进剂的研制与进展[J]. 含能材料. 2004, 12(6): 371-375.

ZHANG Qiong-fang, ZHANG Jiao-qiang. Research and development of insensitive solid propellants[J]. Chinese Journal of Energetic Materials. 2004, 12(6): 371-375.

[6]     Millar R, Philbin S, Claridge R, et al. Studies of novel heterocyclic insensitive high explosive compounds: pyridines, pyrimidines, pyrazines and their bicyclic analogues[J]. Propellants Explosives Pyrotechnics. 2004, 29(2): 81-92.

[7]     Pagoria P, Lee G, Mitchell A, et al. A review of energetic materials synthesis[J]. Thermochimica Acta. 2002, 384(1): 187-204.

[8]     庞爱民, 郑剑. 高能固体推进剂技术未来发展展望[J]. 固体火箭技术. 2004, 27(4): 289-293.

PANG Ai-min, ZHENG Jian. Prospect of the research and development of high energy solid propellant technology[J]. Journal of Solid Rocket Technology. 2004, 27(4): 289-293.

[9]     Abrishami F, Zohari N, Zeynali V. Synthesis and Characterization of poly(glycidyl nitrate- block- caprolactone- block- glycidyl nitrate) (PGN-PCL-PGN) Tri-block copolymer as a novel energetic binder[J]. Propellants Explosives Pyrotechnics. 2017, 42(9): 1032-1036.

[10]   Abrishami F, Zohari N, Zeynali V. Synthesis and kinetic study on the thermal degradation of triblock copolymer of polycaprolactone-poly (glycidyl nitrate)-polycaprolactone (PCL-PGN-PCL) as an energetic binder[J]. Polymers for Advanced Technologies. 2019, 30(3): 640-647.

[11]   Min B, Ko S. Characterization of segmented block copolyurethane network based on glycidyl azide polymer and polycaprolactone[J]. Macromolecular Research. 2007, 15(3): 225-233.

[12]   Sivalingam G, Karthik R, Madras G. Kinetics of thermal degradation of poly(ε-caprolactone)[J]. Journal of Analytical and Applied Pyrolysis. 2003, 70(2): 631-647.

[13]   Min B. Characterization of the plasticized GAP/PEG and GAP/PCL block copolyurethane binder matrices and its propellants[J]. Propellants Explosives Pyrotechnics. 2010, 33(2): 131-138.

[14]   Yuan S, Jiang S, Luo Y. Cross-linking network structures and mechanical properties of novel HTPE/PCL binder for solid propellant[J]. Polymer Bulletin. 2020, published online.

[15]   Yuan S, Zhang B, Wen X, et al. Influence of strain rate on mechanical properties of HTPE/PCL propellant applying to wide temperature range[J]. Propellants Explosives Pyrotechnics. 2020, published online.

[16]   Lade R, Wasewar K, Sangtyani R, et al. Effect of aluminum nanoparticles on rheological behavior of HTPB-based composite rocket propellant[J]. Journal of Energetic Materials. 2019, 37(2): 125-140.

[17]   Muthiah R, Krishnamurthy V, Gupta B. Rheology of HTPB propellant. I. Effect of solid loading, oxidizer particle size, and aluminum content[J]. Journal of Applied Polymer Science. 1992, 44(11): 2043-2052.

[18]   邓竞科. GAP基高能固体推进剂研究[D]. 北京: 北京理工大学, 2015. 06.

DENG Jing-ke. Study on GAP based high energy solid propellant[D]. Beijing: Beijing Institute of Technology, 2015. 06.

[19]   尹必文, 鲁国林, 吴京汉. 复合固体推进剂药浆工艺性能概述[J]. 化学推进剂与高分子材料. 2015, 13(3): 8-14.

YIN Bi-wen, LU Guo-lin, WU Jing-han. Summary on processing performance of composite solid propellant slurry[J]. Chemical Propellants and Polymeric Materials. 2015, 13(3): 8-14.

[20]   Jawalkar S, Ramesh K, Radhakrishnan K, et al. Studies on the effect of plasticizer and addition of toluene diisocyanate at different temperatures in composite propellant formulations[J]. Journal of Hazardous Materials. 2009, 164(2-3): 549-554.

[21]   Ma S, Du, W, Luo, Y. Simulation of GAP/HTPB phase behaviors in plasticizers and its application in composite solid propellant[J]. e-Polymers. 2018, 18(6): 529-540.

[22]   唐汉祥. 铝粉/HTPB悬浮液的流变特性[J]. 固体火箭技术. 1996, 19(3): 23-27.

TANG Han-xiang. Rheologic behaviour of HTPB suspension filled with aluminum powder[J]. Journal of Solid Rocket Technology. 1996, 19(3): 23-27.

[23]   唐汉祥. AP级配和铝粉对HTPB推进剂药浆流变性的影响[J]. 固体火箭技术. 1998, 21(1): 26-30.

TANG Han-xiang. Effect of multimodal AP and Al on rheological behaviour of HTPB propellant slurry[J]. Journal of Solid Rocket Technology. 1998, 21(1): 26-30.

[24]   Rodic V, Mirjana P. The effect of additives on solid rocket propellant characteristics[J]. Scientific Technical Review. 2004, 3(4): 9-14.

[25]   鲁国林, 王北海. 醇胺类助剂对丁羟推进剂药浆流变性能的影响[J]. 推进技术. 2000, 21(4): 78-81.

LU Guo-lin, WANG Bei-hai. Effect of ethanolamine derivative aids on rheological properties of HTPB propellant slurry[J]. Journal of Propulsion Technology. 2000, 21(4): 78-81.

[26]   唐汉祥, 吴倩, 陈江. 推进剂功能组分作用研究(Ⅲ)-聚醚/硝酸酯体系[J]. 固体火箭技术. 2003, 26(1): 48-52.

TANG Han-xiang, WU qian, CHEN Jiang. Reaction mechanism of special functional agents in composite solid propellant (Ⅲ)-polyether/nitrate system[J]. Journal of Solid Rocket Technology. 2003, 26(1): 48-52.

[27] Grythe F, Hansen K. Diffusion rates and the role of diffusion in solid propellant rocket motor adhesion[J]. Journal of Applied Polymer Science. 2007, 103(3): 1529-1538.

[28] 邓蕾, 张炜, 鲍桐, 等. PBT与含能增塑剂相互作用的分子动力学模拟[J]. 含能材料. 2017;25(01):32-38.

DENG Lei, ZHANG Wei, BAO Tong, et al. Molecular Dynamics Simulation of Interaction between PBT and Energetic Plasticizer[J]. Chinese Journal of Energetic Materials. 2017;25(01):32-38.

 

[29]   杨长生, 蒋登高, 石晓华, 等. 木粉聚醚的流变特性以及粘流温度效应[J]. 高校化学工程学报. 2001, 15(1): 78-81.

YANG Chang-sheng, JIANG Deng-gao, SHI Xiao-hua, et al. Study on the Rheology Behavior of Wood Flour Polyether and Relationship between their Viscosity and Temperature[J]. Journal of Chemical Engineering of Chinese Universities. 2001, 15(1): 78-81.

[30]   王小英, 尹欣梅, 吴倩, 等.温度对RDX/PET/NPBA推进剂药浆流变特性的影响[J].火炸药学报. 2014, 37(3): 52-55.

WANG Xiao-ying, YIN Xin-mei, WU Qian, et al. Effect of temperature on rheological properties of RDX/PET/NPBA slurry[J]. Chinese Journal of Explosives & Propellant. 2014, 37(3): 52-55.

[31]   金日光, 华幼卿. 高分子物理[M]. 北京: 化学工业出版社, 2007.

JIN Ri-guang, HUA You-qing. Polymer physics[M]. Beijing: Chemical Industry Press, 2007.

[32]   毛科铸. PET基钝感推进剂研究[D]. 北京: 北京理工大学, 2015. 06.

MAO Ke-zhu. The research on the PET-based insensitive propellant[D]. Beijing: Beijing Institute of Technology, 2015. 06.

[33] Lade R, Wasewar K, Sangtyani R, et al. Effect of aluminum nanoparticles on rheological behavior of HTPB-based composite rocket propellant[J]. Journal of Energetic Materials 2018, 37(3): 1-16.

[34]   Stacer RG, Husband DM. Molecular structure of the ideal solid propellant binder[J]. Propellants Explosives Pyrotechnics. 1991, 16(4): 167-176.

11

Accesses

0

Citation

Detail

Sections
Recommended

/