
-
Sponsored by:
Editor-In-Chief:
ISSN 1007-7812
-
Hosted By:
Published By: Chinese Journal of Explosives & Propellants
CN 61-1310/TJ
Study on Rheological Properties of HTPE/PCL Four-Component Propellant Slurry
YUAN Shen,ZHAO Yue,LUO Yun-jun
Sponsored by:
Editor-In-Chief:
ISSN 1007-7812
Hosted By:
Published By: Chinese Journal of Explosives & Propellants
CN 61-1310/TJ
Study on Rheological Properties of HTPE/PCL Four-Component Propellant Slurry
wide temperature range / HTPE/PCL propellant / rheological properties / process performances {{custom_keyword}} /
[1] Chen K, Wen X, Li G, et al. Improvement of mechanical properties of in situ-prepared HTPE binder in propellants[J]. RSC Advances. 2020, 10(50): 30150-30161.
[2] 汪存东, 罗运军, 夏敏. HTPE的合成及弹性体的性能[J]. 含能材料, 2011, 19(5): 518-522.
WANG Cun-dong, LUO Yun-jun, XIA Min. Synthesis of HTPE and properties of HTPE elastomers[J]. Chinese Journal of Energetic Materials. 2011, 19(5): 518-522.
[3] Wen X, Zhang G, Chen K, et al. Enhancing the performance of an HTPE binder by adding a novel hyperbranched multi-arm azide copolyether[J]. Propellants Explosives Pyrotechnics. 2020, 45(7): 1065-1075.
[4] 宋晓庆, 周集义, 王文浩, 等. HTPE推进剂研究进展[J]. 含能材料. 2008, 16(3): 349-352.
SONG Xiao-qing, ZHOU Ji-yi, WANG Wen-hao, et al. Review on HTPE propellants[J]. Chinese Journal of Energetic Materials. 2008, 16(3): 349-352.
[5] 张琼方, 张教强. 钝感固体推进剂的研制与进展[J]. 含能材料. 2004, 12(6): 371-375.
ZHANG Qiong-fang, ZHANG Jiao-qiang. Research and development of insensitive solid propellants[J]. Chinese Journal of Energetic Materials. 2004, 12(6): 371-375.
[6] Millar R, Philbin S, Claridge R, et al. Studies of novel heterocyclic insensitive high explosive compounds: pyridines, pyrimidines, pyrazines and their bicyclic analogues[J]. Propellants Explosives Pyrotechnics. 2004, 29(2): 81-92.
[7] Pagoria P, Lee G, Mitchell A, et al. A review of energetic materials synthesis[J]. Thermochimica Acta. 2002, 384(1): 187-204.
[8] 庞爱民, 郑剑. 高能固体推进剂技术未来发展展望[J]. 固体火箭技术. 2004, 27(4): 289-293.
PANG Ai-min, ZHENG Jian. Prospect of the research and development of high energy solid propellant technology[J]. Journal of Solid Rocket Technology. 2004, 27(4): 289-293.
[9] Abrishami F, Zohari N, Zeynali V. Synthesis and Characterization of poly(glycidyl nitrate- block- caprolactone- block- glycidyl nitrate) (PGN-PCL-PGN) Tri-block copolymer as a novel energetic binder[J]. Propellants Explosives Pyrotechnics. 2017, 42(9): 1032-1036.
[10] Abrishami F, Zohari N, Zeynali V. Synthesis and kinetic study on the thermal degradation of triblock copolymer of polycaprolactone-poly (glycidyl nitrate)-polycaprolactone (PCL-PGN-PCL) as an energetic binder[J]. Polymers for Advanced Technologies. 2019, 30(3): 640-647.
[11] Min B, Ko S. Characterization of segmented block copolyurethane network based on glycidyl azide polymer and polycaprolactone[J]. Macromolecular Research. 2007, 15(3): 225-233.
[12] Sivalingam G, Karthik R, Madras G. Kinetics of thermal degradation of poly(ε-caprolactone)[J]. Journal of Analytical and Applied Pyrolysis. 2003, 70(2): 631-647.
[13] Min B. Characterization of the plasticized GAP/PEG and GAP/PCL block copolyurethane binder matrices and its propellants[J]. Propellants Explosives Pyrotechnics. 2010, 33(2): 131-138.
[14] Yuan S, Jiang S, Luo Y. Cross-linking network structures and mechanical properties of novel HTPE/PCL binder for solid propellant[J]. Polymer Bulletin. 2020, published online.
[15] Yuan S, Zhang B, Wen X, et al. Influence of strain rate on mechanical properties of HTPE/PCL propellant applying to wide temperature range[J]. Propellants Explosives Pyrotechnics. 2020, published online.
[16] Lade R, Wasewar K, Sangtyani R, et al. Effect of aluminum nanoparticles on rheological behavior of HTPB-based composite rocket propellant[J]. Journal of Energetic Materials. 2019, 37(2): 125-140.
[17] Muthiah R, Krishnamurthy V, Gupta B. Rheology of HTPB propellant. I. Effect of solid loading, oxidizer particle size, and aluminum content[J]. Journal of Applied Polymer Science. 1992, 44(11): 2043-2052.
[18] 邓竞科. GAP基高能固体推进剂研究[D]. 北京: 北京理工大学, 2015. 06.
DENG Jing-ke. Study on GAP based high energy solid propellant[D]. Beijing: Beijing Institute of Technology, 2015. 06.
[19] 尹必文, 鲁国林, 吴京汉. 复合固体推进剂药浆工艺性能概述[J]. 化学推进剂与高分子材料. 2015, 13(3): 8-14.
YIN Bi-wen, LU Guo-lin, WU Jing-han. Summary on processing performance of composite solid propellant slurry[J]. Chemical Propellants and Polymeric Materials. 2015, 13(3): 8-14.
[20] Jawalkar S, Ramesh K, Radhakrishnan K, et al. Studies on the effect of plasticizer and addition of toluene diisocyanate at different temperatures in composite propellant formulations[J]. Journal of Hazardous Materials. 2009, 164(2-3): 549-554.
[21] Ma S, Du, W, Luo, Y. Simulation of GAP/HTPB phase behaviors in plasticizers and its application in composite solid propellant[J]. e-Polymers. 2018, 18(6): 529-540.
[22] 唐汉祥. 铝粉/HTPB悬浮液的流变特性[J]. 固体火箭技术. 1996, 19(3): 23-27.
TANG Han-xiang. Rheologic behaviour of HTPB suspension filled with aluminum powder[J]. Journal of Solid Rocket Technology. 1996, 19(3): 23-27.
[23] 唐汉祥. AP级配和铝粉对HTPB推进剂药浆流变性的影响[J]. 固体火箭技术. 1998, 21(1): 26-30.
TANG Han-xiang. Effect of multimodal AP and Al on rheological behaviour of HTPB propellant slurry[J]. Journal of Solid Rocket Technology. 1998, 21(1): 26-30.
[24] Rodic V, Mirjana P. The effect of additives on solid rocket propellant characteristics[J]. Scientific Technical Review. 2004, 3(4): 9-14.
[25] 鲁国林, 王北海. 醇胺类助剂对丁羟推进剂药浆流变性能的影响[J]. 推进技术. 2000, 21(4): 78-81.
LU Guo-lin, WANG Bei-hai. Effect of ethanolamine derivative aids on rheological properties of HTPB propellant slurry[J]. Journal of Propulsion Technology. 2000, 21(4): 78-81.
[26] 唐汉祥, 吴倩, 陈江. 推进剂功能组分作用研究(Ⅲ)-聚醚/硝酸酯体系[J]. 固体火箭技术. 2003, 26(1): 48-52.
TANG Han-xiang, WU qian, CHEN Jiang. Reaction mechanism of special functional agents in composite solid propellant (Ⅲ)-polyether/nitrate system[J]. Journal of Solid Rocket Technology. 2003, 26(1): 48-52.
[27] Grythe F, Hansen K. Diffusion rates and the role of diffusion in solid propellant rocket motor adhesion[J]. Journal of Applied Polymer Science. 2007, 103(3): 1529-1538.
[28] 邓蕾, 张炜, 鲍桐, 等. PBT与含能增塑剂相互作用的分子动力学模拟[J]. 含能材料. 2017;25(01):32-38.
DENG Lei, ZHANG Wei, BAO Tong, et al. Molecular Dynamics Simulation of Interaction between PBT and Energetic Plasticizer[J]. Chinese Journal of Energetic Materials. 2017;25(01):32-38.
[29] 杨长生, 蒋登高, 石晓华, 等. 木粉聚醚的流变特性以及粘流温度效应[J]. 高校化学工程学报. 2001, 15(1): 78-81.
YANG Chang-sheng, JIANG Deng-gao, SHI Xiao-hua, et al. Study on the Rheology Behavior of Wood Flour Polyether and Relationship between their Viscosity and Temperature[J]. Journal of Chemical Engineering of Chinese Universities. 2001, 15(1): 78-81.
[30] 王小英, 尹欣梅, 吴倩, 等.温度对RDX/PET/NPBA推进剂药浆流变特性的影响[J].火炸药学报. 2014, 37(3): 52-55.
WANG Xiao-ying, YIN Xin-mei, WU Qian, et al. Effect of temperature on rheological properties of RDX/PET/NPBA slurry[J]. Chinese Journal of Explosives & Propellant. 2014, 37(3): 52-55.
[31] 金日光, 华幼卿. 高分子物理[M]. 北京: 化学工业出版社, 2007.
JIN Ri-guang, HUA You-qing. Polymer physics[M]. Beijing: Chemical Industry Press, 2007.
[32] 毛科铸. PET基钝感推进剂研究[D]. 北京: 北京理工大学, 2015. 06.
MAO Ke-zhu. The research on the PET-based insensitive propellant[D]. Beijing: Beijing Institute of Technology, 2015. 06.
[33] Lade R, Wasewar K, Sangtyani R, et al. Effect of aluminum nanoparticles on rheological behavior of HTPB-based composite rocket propellant[J]. Journal of Energetic Materials 2018, 37(3): 1-16.
[34] Stacer RG, Husband DM. Molecular structure of the ideal solid propellant binder[J]. Propellants Explosives Pyrotechnics. 1991, 16(4): 167-176.
/
〈 |
|
〉 |