固定翼无人机多工况聚类及工况匹配

梁少军;张世荣;郑幸;林冬生

兵工学报 ›› 2020, Vol. 41 ›› Issue (8) : 1600-1612.

兵工学报 ›› 2020, Vol. 41 ›› Issue (8) : 1600-1612. DOI: 10.3969/j.issn.1000-1093.2020.08.015
论文

固定翼无人机多工况聚类及工况匹配

  • 梁少军1,2, 张世荣2, 郑幸1, 林冬生1
作者信息 +

Multiple Working Condition Clustering and Matching of Fixed Wing UAV

  • LIANG Shaojun1,2, ZHANG Shirong2, ZHENG Xing1, LIN Dongsheng1
Author information +
文章历史 +

摘要

固定翼无人机(UAV)执行任务全程可分为多个工况,对UAV进行工况分析是故障诊断的前提。基于UAV操控原理,选取横向、纵向、速度控制回路的9个状态变量(升降舵偏角、左副翼舵偏角、右副翼舵偏角3个执行器输出数据以及航向角、俯仰角、倾斜角、高度、空速、缸温6个传感器输出数据)表征UAV实时工作状态。根据UAV数据特征提出共享近邻改进的密度聚类(SNN-DBSCAN*)算法,用于划分UAV工况。结合数据剪切率、满意曲线概念得到适合SNN-DBSCAN*算法的拐点启发式参数优化方法。提出独立成分分析与支持向量机(ICA-SVM)融合算法用于在线工况匹配,其中独立成分分析(ICA)算法旨在对UAV各变量数据进行特征提取和重构,以提高匹配模型的抗干扰能力。UAV实飞数据结果表明:SNN-DBSCAN*算法可在不增加先验知识基础上合理地划分UAV工况,ICA-SVM匹配模型可以获得满意的工况匹配准确率,且对UAV的变量偏差有较好的抵御能力。

Abstract

The whole mission of fixed-wing UAV can be divided into multiple working conditions, and the analysis of UAV working conditions is the precondition of fault diagnosis. According to the control principle of UAV, 9 variables (deflection angle of elevator, rudder deflection angle of left and right ailerons, course angle, elevation angle, angle of inclination, height, airospeed, and cylinder temperature) of the horizontal, vertical and speed control loops are selected to represent the real-time working conditons of UAV. For the characteristic of UAV data set, a modified density clustering algorithm coupled with shared nearest neighbor is proposed, which is notated as SNN-DBSCAN* to classify UAV working conditions. An inflexion heuristic parameter optimization approach combined with data shear rate and satisfied curves is specifically proposed for SNN-DBSCAN*. An independent component analysis and support vector machine fusion algorithm which is notated as ICA-SVM is proposed for condition matching of UAV. ICA is intentionally employed for feature extraction and reconstruction of the UAV variables so as to improve the disturbance resisting capacity of the condition matching algorithm. The test result of the real UAV flight data set shows that the SNN-DBSCAN* algorithm can reasonably classify UAV working conditions without increasing prior knowledge, and a satisfied matching accuracy can be achieved with ICA-SVM model which shows good disturbance resisting capacity to the deviations of the UAV variables.

关键词

固定翼无人机 / 多工况聚类 / 工况匹配 / 共享近邻 / 密度聚类 / 独立成分分析 / 模式匹配

Key words

fixed-wingunmannedairvehicle / multi-workingconditionclustering / workingconditionmatching / sharednearestneighbor / densityclustering / independentcomponentanalysis / patternmatching

引用本文

导出引用
梁少军, 张世荣, 郑幸, 林冬生. 固定翼无人机多工况聚类及工况匹配. 兵工学报. 2020, 41(8): 1600-1612 https://doi.org/10.3969/j.issn.1000-1093.2020.08.015
LIANG Shaojun, ZHANG Shirong, ZHENG Xing, LIN Dongsheng. Multiple Working Condition Clustering and Matching of Fixed Wing UAV. Acta Armamentarii. 2020, 41(8): 1600-1612 https://doi.org/10.3969/j.issn.1000-1093.2020.08.015

基金

陆军装备“十三五”军内科研重点项目(LJ20182B050054)

参考文献


[1]李明虎, 李钢, 钟麦英. 动态核主元分析在无人机故障诊断中的应用[J].山东大学学报(工学版),2017,47(5): 215-222.
LI M H, LI G, ZHONG M Y. Application of dynamic kernel principal component analysis in unmanned aerial vehicle gault diagnosis [J]. Journal of Shandong University (Engineering Science), 2017, 47(5): 215-222. (in Chinese)
[2]LEEJ, SHIN H, KIM T. Optimal combination of fault detection and isolation methods of integrated navigation algorithm for UAV[J]. International Journal of Aeronautical and Space Sciences, 2018, 19(3): 694-710.
[3]HEREDIA G, CABALLERO F, MAZA I, et al. Multi-unmanned aerial vehicle (UAV) cooperative fault detection employing differential global positioning (DGPS), inertial and vision sensors[J]. Sensors, 2009, 9(9): 7566-7579.
[4]ABBASPOUR A, ABOUTALEBI P, YEN K K, et al. Neural adaptive observer-based sensor and actuator fault detection in nonlinear systems: application in UAV[J]. ISA Transactions, 2017, 67: 317-329.
[5]KONG C, KI J, KHO S, et al. Artificial intelligent fault detection of a turboshaft engine for smart UAV using SIMULINK performance model[J]. International Journal of Turbo and Jet Engines, 2007, 24(3/4): 161-170.
[6]唐东明. 聚类分析及其应用研究[D].成都:电子科技大学, 2010:13-15.
TANG D M. Study on clustering algorithm and its applications[D].Chengdu:University of Electronic Science and Technology of China, 2010:13-15. (in Chinese)
[7]LUCHI D, LOUREIROS R A, MIGUEL V F. Sampling approaches for applying DBSCAN to large datasets[J]. Pattern Recognition Letters, 2019, 117: 90-96.
[8]CHOI M H, SHIRINZADEH B, PORTER R. System identification-based sliding mode control for small-scaled autonomous aerial vehicles with unknown aerodynamics derivatives[J]. IEEE/ASME Transactions on Mechatronics,2016,21(6): 2944-2952.
[9]QIN S J, BADGWELL T A. A survey of industrial model predictive control technology[J].Control Engineering Practice, 2003, 11(7): 733-764.
[10]张琦, 廖捷, 吴建军, 等. 基于FTA的通用装备电子系统故障诊断专家系统设计[J]. 兵工学报, 2008, 29(2): 174-177.
ZHANG Q,LIAO J,WU J J,et al.Design of diagnostic expert system for electronic system of general equipment based on FTA[J].Acta Armamentarii, 2008, 29(2): 174-177. (in Chinese)
[11]黄大荣, 陈长沙, 孙国玺, 等. 复杂装备轴承多重故障的线性判别分析与反向传播神经网络协作诊断方法[J].兵工学报, 2017,38(8):1649-1657.
HUANG D R, CHEN C S, SUN G X, et al. Linear discriminant analysis and back propagation neural network cooperative diagnosis method for multiple faults of complex equipment bearings[J]. Acta Armamentarii, 2017, 38(8): 1649-1657. (in Chinese)
[12]文成林, 吕菲亚, 包哲静, 等. 基于数据驱动的微小故障诊断方法综述[J]. 自动化学报, 2016, 42(9): 1285-1299.
WEN C L,L F Y,BAO Z J, et al. A review of data driven-based incipient fault diagnosis[J]. Acta Automatica Sinica, 2016,42(9): 1285-1299. (in Chinese)
[13]李强. 基于深度卷积神经网络的数据驱动故障诊断方法研究[D]. 济南:山东大学, 2018:2-4.
LI Q. Research on data-driven fault diagnosis method based on deep convolutional neural networks[D]. Jinan:Shangdong Uinversity, 2018:2-4. (in Chinese)
[14]MAHESHK K, RAMA M R A.A fast DBSCAN clustering algorithm by accelerating neighbor searching using groups method[J].Pattern Recognition, 2016, 58: 39-48.
[15]L Y H, MA T H, TANG M L,et al. An efficient and scalable density-based clustering algorithm for datasets with complex structures[J]. Neurocomputing, 2016, 171: 9-22.
[16]KIM J H, CHOI J H, YOO K H, et al. AA-DBSCAN: an approximate adaptive DBSCAN for finding clusters with varying densities[J]. The Journal of Supercomputing, 2019, 75: 142-169.
[17]CHEN Y W, TANG S Y, BOUGUILA N, et al. A fast clustering algorithm based on pruning unnecessary distance computations in DBSCAN for high-dimensional data[J]. Pattern Recognition, 2018, 83: 375-387.
[18]VISWANATH P, SURESH B V. Rough-DBSCAN: a fast hybrid density based clustering method for large data sets[J]. Pattern Recognition Letters, 2009, 30(16): 1477-1488.
[19]JAHIRABADKAR S, KULKARNI P. Algorithm to determine ε-distance parameter in density based clustering[J].Expert Systems with Applications, 2014, 41(6): 2939-2946.
[20]YAOHUI L, ZhENGMING M, FANG Y. Adaptive density peak clustering based on k-nearest neighbors with aggregating strategy[J]. Knowledge-Based Systems, 2017, 133: 208-220.
[21]叶进, 朱健, 卢泉, 等. 一种基于改进DBSCAN算法的光伏故障检测方法[J].广西大学学报(自然科学版), 2019, 44(2):440-447.
YE J, ZHU J, LU Q, et al. A fault detection method of photovoltaic power station based on improved DBSCAN clustering algorithm[J]. Journal of Guangxi University(NaturalScience Edition), 2019, 44(2): 440-447. (in Chinese)
[22]SARWAT A, JAMI V, GUDDETI R M R. A novel two-step approach for overlapping community detection in social networks[J]. Social Network Analysis and Mining, 2017, 7(1): 1-11.
[23]葛晓霞, 缪国钧, 毕小龙, 等. 基于独立成分分析的火电厂数据重构方法[J]. 华东电力, 2012, 40(6): 1071-1074.
GE X X, MIAO G J, BI X L, et al. Power plant data reconstruction based on independent component analysis[J]. East China Electric Power, 2012, 40(6): 1071-1074. (in Chinese)
[24]郭蓉. 基于非白化数据的独立分量回归及其应用[D]. 西安:西安电子科技大学, 2018:6-7.
GUO R. Independent component regression based on non-whitened data and its application[D]. Xi'an: Xidian University, 2018:6-7. (in Chinese)
[25]ZHAO W, FAN T, NIE Y, et al. Research on attribute dimension partition based on SVM classifying and mapreduce[J]. Wireless Personal Communications, 2018, 102(4): 2759-2774.


文章所在专题

智能系统与装备

344

Accesses

0

Citation

Detail

段落导航
相关文章

/