水中目标自由场声辐射特性还原及远场声辐射热区识别

林伟;夏茂龙;刘正浩;黎胜;孟春霞

兵工学报 ›› 2020, Vol. 41 ›› Issue (1) : 119-126.

兵工学报 ›› 2020, Vol. 41 ›› Issue (1) : 119-126. DOI: 10.3969/j.issn.1000-1093.2020.01.014
论文

水中目标自由场声辐射特性还原及远场声辐射热区识别

  • 林伟1,2, 夏茂龙1,2, 刘正浩3, 黎胜1,2, 孟春霞4
作者信息 +

The Recovery of Underwater Target's Free Field Acoustic Radiation Characteristics and Identification of Far-field AcousticRadiation Hotspot

  • LIN Wei1,2, XIA Maolong1,2, LIU Zhenghao3, LI Sheng1,2, MENG Chunxia4
Author information +
文章历史 +

摘要

获取水中目标的声特性对目标识别和分析十分重要。为解决水中目标声特性测试中自由场条件难以实现的问题,消除结构表面能量流对远场声辐射热区识别的干扰,提出结合基于边界元自由场还原技术和表面贡献法的声场分离技术,实现水中近场非自由场环境中获取水中目标的声特性和识别远场声辐射热区。数值模拟结果表明:非自由环境下基于边界元的声场还原方法还原得到的声场声压、声功率等特性,与直接在自由场获取的结果基本相同;进一步利用表面贡献法过滤掉循环于振动结构表面的能量流,能够在近场识别远场辐射热区。该方法突破了测试环境限制,可大幅降低测试费用,具有一定的工程应用价值。

Abstract

Acquiring the acoustic characteristics of target in water is very important for the identification and analysis of a target. A field separation technique combined sound field recovery technology based on boundary element method with surface contribution method is proposed to achieve the free field conditions for testing the sound characteristics of target in water and eliminate the interference of the energy flow at the surface of structure to the identification of hotspot in the far-field acoustic radiation. The proposed method can be used to obtain the free field acoustic characteristics of the underwater target in the non-free and near field environment and identify hotspot in far field in water. The simulated results show that there are no significant differences among the sound pressure and sound power obtained by the sound field recovery technology and those in the free field. The surface contribution method is used to filter out the energyflow circulating on the surface of vibrating structure, so far-field acoustic radiation hotspot can be identified in near field. The proposed method breaks through the limitations of test environment, significantly reduces the testing costs and has certain engineering application value. Key

关键词

水中目标 / 声辐射特性 / 自由场 / 远场热区 / 自由场还原 / 表面贡献法

Key words

underwatertarget / acousticradiationcharacteristic / freefield / hotspotinfarfield / freefieldrecoverytechnology / surfacecontributionmethod

引用本文

导出引用
林伟, 夏茂龙, 刘正浩, 黎胜, 孟春霞. 水中目标自由场声辐射特性还原及远场声辐射热区识别. 兵工学报. 2020, 41(1): 119-126 https://doi.org/10.3969/j.issn.1000-1093.2020.01.014
LIN Wei, XIA Maolong, LIU Zhenghao, LI Sheng, MENG Chunxia. The Recovery of Underwater Target's Free Field Acoustic Radiation Characteristics and Identification of Far-field AcousticRadiation Hotspot. Acta Armamentarii. 2020, 41(1): 119-126 https://doi.org/10.3969/j.issn.1000-1093.2020.01.014

基金

水下测控技术重点实验室延伸性发展基金项目(YS0C261506)

参考文献



[1]王志伟, 刘文帅.舰船声隐身测试与目标声特性获取关联关系分析[C]∥中国造船工程学会船舶力学学术委员会水下噪声学组成立三十周年船舶水下噪声学术讨论会. 郑州:中国造船工程学会, 2015.
WANG Z W,LIU W S. Analysis of correlation between ship's acoustic stealth test and target acoustic characteristics acquisition[C]∥Proceedings of the 30th Anniversary of Underwater Noise Group of Ship Mechanics Academic Committee of CSNAME and the 15th Ship Underwater Noise Academic Seminar. Zhengzhou: Chinese Society of Naval Architecture and Marine Engineers,2015.(in Chinese)
[2]高霄鹏. 舰艇水动力噪声的数值分析与拖曳模测试技术研究[D].上海:上海交通大学, 2007.
GAO X P. The study on numerical analysis of fluid noise and acoustic test with towed model[D].Shanghai:Shanghai Jiao Tong University,2007.(in Chinese)
[3]姜可宇,姚直象,尹敬湘.一种基于三元阵的水下目标被动定位方法[J]. 兵工学报, 2012, 33(9):1107-1111.
JIANG K Y, YAO Z X, YIN J X. A passive locating method for underwater target based on three-element-array[J]. Acta Armamentarii, 2012, 33(9):1107-1111.(in Chinese)
[4]刘程鹏. 结构声辐射的倏逝波滤波技术及应用研究[D]. 大连:大连理工大学, 2018.
LIU C P. Evanescent wave filtering technology and application in structural acoustic radiation[D].Dalian: Dalian University of Technology,2018. (in Chinese)
[5]STEPANISHENP R, BENJAMIN K C.Forward and backward projection of acoustic fields using FFT methods[J].Journal of the Acoustical Society of America, 1998, 71(4):803-812.
[6]MAYNARD J D, WILLIAMS E G, LEE Y. Nearfield acoustic holography: I. theory of generalized holography and the development of NAH[J]. Journal of the Acoustical Society of America, 1985, 78(4):1395-1413.
[7]VERONESI W A, MAYNARD J D. Nearfield acoustic holography(NAH) II holographic reconstruction algorithms and computer implementation[J]. Journal of the Acoustical Society of America, 1987, 81(5):1307-1322.
[8]WILLIAMS E G, DARDY H D, WASHBURN K B. Generalized nearfield acoustical holography for cylindrical geometry: theory and experiment[J].Journal of the Acoustical Society of America,1987, 81(2):389-407.
[9]WILLIAMS E G.Fourier acoustics[M]. Cambridge,MA,US:AcademicPress,1999.

[10]陈心昭, 毕传兴. 近场声全息技术及其应用[M].北京:科学出版社, 2013.
CHEN X Z, BI C X.Near-field acoustic holography and its application[M].Beijing:Science Press, 2013.(in Chinese)
[11]WILLIAMSE G, MAYNARD J D, SKUDRZYK E.Sound source reconstructions using a microphone array[J].Journal of the Acoustical Society of America,1980, 68(1):340-344.
[12]BI C X, BOLTON J S. An equivalent source technique for reco-veringthe free sound field in a noisy environment[J]. Journal of the Acoustical Society of America, 2012, 131(2):1260.
[13]田湘林, 楼京俊.基于等效源法的单全息面分离声场研究[J]. 噪声与振动控制, 2018, 38(4):23-26.
TIAN X L,LOU J J.Study on sound field of single holographic surface separation based on equivalent source method[J]. Noise and Vibration Control, 2018, 38(4):23-26.(in Chinese)
[14]王晓冬. 单全息面的直接声场分离方法探究[J].科技经济导刊, 2018, 26(13):27.
WANG X D. Research on direct sound field separation method of single holographic surface[J]. Technology and Economic Guide, 2018, 26(13):27.(in Chinese)
[15]周思同, 何琳, 帅长庚, 等. 基于简正波和波叠加法的水下非自由声场重建技术仿真研究[J]. 兵工学报, 2018, 39(2): 338-344.
ZHOU S T, HE L, SHUAI C G, et al. Simulation research on underwater non-free sound field reconstruction based on normal mode and wave superposition[J]. Acta Armamentarii, 2018, 39(2): 338-344. (in Chinese)
[16]BOBROVNITSKII Y I, MAL′TSEV K I, OSTAPISHIN N M, et al. Acoustical model of a machine[J]. Soviet Physics Acoustics, 1991, 37(6):570-574.
[17]LANGRENNEC,MELON M,GARCIA A.Boundary element method for the acoustic characterization of a machine in bounded noisy environment[J]. Journal of the Acoustical Society of America,2007,121(5 Pt1):2750-2757.
[18]林伟, 夏茂龙, 孟春霞, 等.水下圆柱壳自由场声辐射特性的获取[J].中国舰船研究,2019,14(2):83-90.
LIN W, XIA M L, MENG C X, et al. The acquisition of free-field acoustic radiation characteristics of underwater cylindrical[J].Ship Science and Technology, 2019,14(2):83-90.(in Chinese)
[19]刘正浩, 郑毅, 黎胜. 基于表面贡献法的船壳远场声辐射热区识别[J]. 舰船科学技术, 2017, 39(7):34-38.
LIU Z H, ZHENG Y, LI S. Identification of hull's radiation hotspot to far-field based on surface contribution method[J].Ship Science and Technology, 2017, 39(7):34-38.(in Chinese)
[20]WILLIAMS E G. Supersonic acoustic intensity on planar sources[J]. Journal of the Acoustical Society of America, 1998, 104(5): 2845-2850.
[21]WILLIAMS E G. Supersonic acoustic intensity[J]. Journal of the Acoustical Society of America,1995, 97(1):121-127.
[22]JUNIOR C A C,TENENBAUM R A.Useful intensity:a technique to identify radiating regions on arbitrarily shaped surfaces[J].Journal of Sound & Vibration, 2013, 332(6):1567-1584.
[23]MARBURG S, LSCHE E, PETERS H, et al. Surface contributions to radiated sound power[J]. Journal of the Acoustical Society of America, 2013, 133(6):3700-3705.
[24]BARNARD A R, HAMBRIC S A, MAYNARD J D.Underwater measurement of narrowband sound power and directivity using supersonic intensity in reverberant environments[J].Journal of Sound & Vibration, 2012, 331(17):3931-3944.
[25]WU T W, OCHMANN M. Boundary element acoustics: fundamentals and computer codes[J].Journal of the Acoustical Society of America, 2002, 111(4):1507-1508.
[26]SEYBERT A F,SOENARKO B,RIZZO F J,et al.An advanced computational method for radiation and scattering of acoustic waves in three dimensions[J]. Journal of the Acoustical Society of America,1985,77(2):362-368.
[27]SCHENCK H A. Improved integral formulation for acoustic radiation problems[J]. Journal of the Acoustical Society of America,1968,44(1):41-58.
[28]TOBOCMANW. Calculation of acoustic wave scattering by means of the Helmholtz integral equation. I[J].Journal of the AcousticalSociety of America,1984,76(2):599-607.
[29]JUNGER M C, FEIT D. Sound, structures, and their interaction[M].Cambridge, MA,US: MIT Press, 1986.





第41卷第1期
2020年1月兵工学报ACTA
ARMAMENTARIIVol.41No.1Jan.2020

文章所在专题

智能系统与装备

426

Accesses

0

Citation

Detail

段落导航
相关文章

/