有界变化时滞和联合连通拓扑条件下的分布式无人机编队飞行控制策略

李小民;毛琼;甘勤涛;杜占龙

兵工学报 ›› 2019, Vol. 40 ›› Issue (6) : 1179-1189.

兵工学报 ›› 2019, Vol. 40 ›› Issue (6) : 1179-1189. DOI: 10.3969/j.issn.1000-1093.2019.06.008
论文

有界变化时滞和联合连通拓扑条件下的分布式无人机编队飞行控制策略

  • 李小民1, 毛琼2, 甘勤涛2, 杜占龙3
作者信息 +

Flight Control Strategy for Distributed UAV Formation under the Conditions of Bounded Time-varying Delay andJointly-connected Topology

  • LI Xiaomin1, MAO Qiong2, GAN Qintao2, DU Zhanlong3
Author information +
文章历史 +

摘要

针对具有非线性动力学特性的多无人机系统通信时滞在有界区间内变化和网络拓扑联合连通情况下的编队控制问题,提出一种基于一致性理论的分布式编队控制策略。利用Lyapunov-Krasovskii函数分析编队的稳定性,推导编队稳定的充分条件。该策略不强调时滞的导数特征,并且可将通信拓扑的高维矩阵求解问题转化为若干个连通部分的低维矩阵求解问题,因此适用性广、计算量小、实时性好。通过仿真验证了非线性快变时滞和随机跳变时滞情况下策略的有效性。结果表明,该方法可指导无人机编队快速聚集和收敛至任意对称或非对称目标队形和以目标速度保持飞行。

Abstract

A consistency theory-based distributed formation control strategy is proposed for the multi-UAVswith nonlinear dynamic characteristics, in which the communication delay is changed in bounded interval and the network topology is jointly-connected. The Lyapunov-Krasovskii function is used to analyze the formation stability and deduce its sufficient conditions. The derivative characteristic of time-delay is not considered, and the high dimensional matrix solution of communication topology is transformed into low dimensional matrix solution with several connected parts. The proposed strategy has the advantages of wide applicability, low computational cost and excellent real-time performance. The effectivity of the proposed method in the cases of nonlinear fast-varying and random hopping delays was verified through simulation experiment. Experimental results show that the proposed strategy can be used to direct the multi-UAVs to assemble and converge to any symmetric or asymmetric target formation with scheduled speed. Key

关键词

无人机编队 / 时变时滞 / 切换拓扑 / 编队控制

Key words

UAVformation / time-varyingdelay / switchingtopology / formationcontrol

引用本文

导出引用
李小民, 毛琼, 甘勤涛, 杜占龙. 有界变化时滞和联合连通拓扑条件下的分布式无人机编队飞行控制策略. 兵工学报. 2019, 40(6): 1179-1189 https://doi.org/10.3969/j.issn.1000-1093.2019.06.008
LI Xiaomin, MAO Qiong, GAN Qintao, DU Zhanlong. Flight Control Strategy for Distributed UAV Formation under the Conditions of Bounded Time-varying Delay andJointly-connected Topology. Acta Armamentarii. 2019, 40(6): 1179-1189 https://doi.org/10.3969/j.issn.1000-1093.2019.06.008

基金

国家自然科学基金项目(61305076)

参考文献



[1]王鹏, 张振峰, 曹明川, 等. 基于一致性多无人机编队的研究现状与发展趋势[J]. 舰船电子工程, 2017, 37(9): 1-9.
WANG P, ZHANG Z F, CAO M C, et al. Research status and development of multi-UAVs formation based on consensus[J]. Ship Electronic Engineering, 2017 , 37(9): 1-9.(in Chinese)
[2]蒋国平, 周映江. 基于收敛速率的多智能体系统一致性研究综述[J]. 南京邮电大学学报, 2017, 37(3): 15-25.
JIANG G P, ZHOU Y J. Research on consensus of multi-agent systems based on convergence rate[J]. Journal of Nanjing University of Posts and Telecommunications, 2017, 37(3) : 15-25.(in Chinese)
[3]LIS H, DU H B, LIN X Z. Finite-time consensus algorithm for multi-agent systems with double-integrator dynamics[J]. Automa-tica,2011, 47(8): 1706-1712.
[4]LINP, JIA Y M. Average consensus in networks of multi-agents with both switching topology and coupling time-delay[J]. Physical A:Statistical Mechanics and Its Applications, 2008, 387(1): 303- 313.
[5]WANGX L, HONG Y G. Finite-time consensus for multi-agent networks with second- order agent dynamics[C]∥ Proceedings of the 17thIFAC World Congress. Seoul, Korea: the International Federation of Automatic Control, 2008: 15185-15190.
[6]ZHOUY J, YU X H, SUN C Y, et a1. Higher-order finite-time consensus protocol for heterogeneous multi-agent systems[J]. International Journal of Control, 2015, 88(2): 285-294.
[7]ZHOUY J, YU X H, SUN C Y, et a1. Robust synchronization of second-order multi-agent system via pinning control[J]. IET Control Theory & Applications, 2015, 9(5) : 775-783.
[8]ZHOUY J, SHEN J J, JIANG G P, et a1. Synchronization of complex dynamical networks via PI pinning control[C]∥ Proceedings of the 35th Chinese Control Conference. Chengdu, Sichaun, China: IEEE, 2016: 8225-8229.
[9]YUW W, REN W, ZHENG W X, et a1. Distributed control gains design for consensus in multi-agent systems with second-order nonlinear dynamics [J]. Automatica, 2013, 49(7): 2107-2115.

[10]WENG H, DUAN Z S, YU W W, et a1. Consensus of second order multi-agent systems with delayed nonlinear dynamics and intermittent communications[J]. International Journal of Control, 2013, 86(2): 322-331.
[11]LIZ K, REN W, LIU X D, et al. Consensus of multi-agent systems with general linear and Lipschitz nonlinear dynamics using distributed adaptive protocols[J]. IEEE Transactions on Automatic Control, 2013, 58 (7): 1786-1791.
[12]ZHAOY, DUAN Z S, WEN G H, et al. Robust consensus tracking of multi-agent systems with uncertain Lur'e-type non-linear dynamics[J]. LET Control Theory & Applications, 2013, 7(9):1249-1260.
[13]PANH, QIAO W J. Consensus of double-integrator discrete-time multi-agent system based on second-order neighbor's information[C]∥Proceedings of the 26th Chinese Control and Decision Conference. Changsha, Hunan, China: IEEE, 2014: 1946-1951.
[14]YUW W, CHEN G R, CAO M. Some necessary and sufficient conditions for second-order consensus in multi-agent dynamical systems[J]. Automatica, 2010, 46(6): 1089-1095.
[15]HUOZ H, FANG H J. Research on robust fault-tolerant control for networked control system with packet dropout[J]. Journal of Systems Engineering and Electronics, 2007, 18(1): 76-82.
[16]SONGQ, CAO J D, YU W W. Second-order leader-following consensus of nonlinear multi-agent systems via pinning control[J]. Systems and Control Letters, 2010, 59(9): 553-562.
[17]王品, 姚佩阳. 存在时滞的分布式无人机编队控制方法[J]. 计算机测量与控制, 2016, 24(9): 181-184.
WANG P, YAO P Y. Control method of distributed UAVs formation with time-delay[J]. Computer Measurement & Control, 2016, 24(9): 181-184.(in Chinese)
[18]罗贺富, 彭世国. 多时变时滞的多智能体系统的分布式编队控制[J]. 广东工业大学, 2017, 34(4): 89-96.
LUO H F, PENG S G. Distributed formation control of multi-agentsystems with coupling time-varying delays[J]. Journal of Guangdong University of Technology, 2017, 34(4): 89-96.(in Chinese)
[19]张亚霄, 陈阳舟, 曲晓俊.线性时滞多智能体系统多类型拓扑切换下的一致性[J]. 北京工业大学学报, 2016, 42(2): 184-189.
ZHANG Y X, CHEN Y Z, QU X J. Consensus of linear multi-agent system with time-delay under multi-type switching topologies [J]. Journal of Beijing University of Technology, 2016, 42(2): 184-189.(in Chinese)
[20]薛瑞彬, 宋建梅, 张民强. 具有时滞及联合连通拓扑的多无人机分布式协同编队飞行控制研究[J]. 兵工学报, 2015, 36(3): 492-502.
XUE R B, SONG J M, ZHANG M Q. Research on distributed multi-vehicle coordinated formation flight control with coupling time-delay and jointly-connected topologies[J]. Acta Armamentarii, 2015, 36(3): 492-502.(in Chinese)
[21]沈林成, 牛轶峰, 朱华勇. 多无人机自主协同控制理论与方法[M]. 北京: 国防工业出版社, 2013.
SHEN L C, NIU Y F, ZHU H Y. Theories and methods of autonomous cooperative control for multiple UAVs[M]. Beijing: National Defense Industry Press, 2013.(in Chinese)
[22]HANQ L, JIANG X F, Xue A K , et al. Computation of delay bound for linear neutral systems with interval time-varying discrete delay[J]. Dynamics of Continuous Discrete and Impulsive System, Series B: Applications & Algorithms, 2006, 13:117-131.
[23]ZHANGL S, HE L, SONG Y D. New results on stability analysis of delayed systems derived from extended wirtinger’s integral inequality[J]. Neurocomputing, 2018, 283:98-106.




第40卷第6期
2019年6月兵工学报ACTA
ARMAMENTARIIVol.40No.6Jun.2019

文章所在专题

智能系统与装备

537

Accesses

0

Citation

Detail

段落导航
相关文章

/