基于数学形态分形维数与模糊C均值聚类的滚动轴承退化状态识别

王冰;李洪儒;陈强华;许葆华

兵工学报 ›› 2015, Vol. 36 ›› Issue (10) : 1982-1990.

兵工学报 ›› 2015, Vol. 36 ›› Issue (10) : 1982-1990. DOI: 10.3969/j.issn.1000-1093.2015.10.022
论文

基于数学形态分形维数与模糊C均值聚类的滚动轴承退化状态识别

  • 王冰1,2, 李洪儒1, 陈强华1,3, 许葆华1
作者信息 +

Rolling Bearing Performance Degradative State Recognition Based on Mathematical Morphological Fractal Dimension andFuzzy Center Means

  • WANG Bing1,2, LI Hong-ru1, CHEN Qiang-hua1,3, XU Bao-hua1
Author information +
文章历史 +

摘要

针对滚动轴承的退化状态识别问题,融合数学形态学与模糊聚类理论,提出一种基于数学形态分形维数与模糊C均值聚类的退化状态识别方法。以数学形态分形维数作为滚动轴承的性能退化特征,从分形角度定量描述其复杂度与不规则度。鉴于不同退化状态边界的模糊性,将模糊C均值聚类方法应用于对退化状态的模糊聚类中,根据最大隶属度原则识别轴承性能退化状态。依托杭州轴承试验研究中心进行滚动轴承疲劳寿命强化试验,采集了滚动轴承从完好到失效的整套全寿命数据,将该方法应用于滚动轴承全寿命周期振动信号中,总体状态识别成功率达到96%. 研究结果表明:该方法计算代价小、效率高,能够有效地识别出滚动轴承的性能退化状态。

Abstract

In allusion to the degenerative state recognition of rolling bearing, a performance degenerative recognition method based on mathematical morphological fractal dimension (MMFD) and fuzzy center means (FCM) is proposed by combining mathematical morphology and fuzzy assemble theory. MMFD is calculated for the performance degenerative feature of rolling bearing to describe its complexity and irregularity in the view of fractal. In consideration of the fuzziness among different performance degradation boundaries, FCM is introduced into fuzzy clustering for characteristic index, and the performance degradation could be recognized effectively in line with maximum subordinate principle. The fatigue life enhancement test of rolling bearing was carried out to gather the whole life data at Hangzhou Bearing Test & Research Center. The method is applied to the whole life data of rolling bearing, the overall state successful recognition rate reachs 96%. The results show that the method has a small calculating cost and a high efficiency, and can efficiently identify the performance degenerative state of rolling bearings.

关键词

机械学 / 特征提取 / 数学形态学 / 模糊聚类 / 退化状态识别 / 滚动轴承

Key words

mechanics / feature extraction / mathematics morphology / fuzzy clustering / degenerative state recognition / rolling bearing

引用本文

导出引用
王冰, 李洪儒, 陈强华, 许葆华. 基于数学形态分形维数与模糊C均值聚类的滚动轴承退化状态识别. 兵工学报. 2015, 36(10): 1982-1990 https://doi.org/10.3969/j.issn.1000-1093.2015.10.022
WANG Bing, LI Hong-ru, CHEN Qiang-hua, XU Bao-hua. Rolling Bearing Performance Degradative State Recognition Based on Mathematical Morphological Fractal Dimension andFuzzy Center Means. Acta Armamentarii. 2015, 36(10): 1982-1990 https://doi.org/10.3969/j.issn.1000-1093.2015.10.022

基金

国家自然科学基金项目(51275524)

参考文献

[1] ChenB Q, Zhang Z S,Sun C, et al. Fault feature extraction of gearbox by using overcomplete rational dilation discrete wavelet transform on signals measured from vibration sensors[J]. Mecha-nicalSystems and Signal Processing, 2012,33(1): 275-298.
[2] Wang H F. Prognostics and health Mmanagement for complex system based on fusion of model-based approach and data-driven approach[J]. Physics Procedia, 2012,24(24): 828-831.
[3] Zhang X D, Xu Roger, Kwan Chinman, et al. Fault diagnosis of complex system based on nonlinear frequency spectrum fusion[J]. Measurement, 2013,46(7) :125-131.
[4] Wachtsevanos G, Lewis F L, Roemer M,等.工程系统中的智能故障诊断与预测[M].袁海文,译.北京:国防工业出版社,2013.
Wachtsevanos G, Lewis F L, Roemer M,et al. Intelligent fault diagnosis and prognosis for engineering systems[M].YUAN Wen-hai, translated.Beijng:National Defense Industry Press,2013.(in Chinese)
[5] Patil M S,Mathew J,Rajendrakumar P K.Bearing signature analysis as a medium for fault detection: a review[J].Journal of Tribology,2008,130( 1) : 14-17.
[6] Ocak H. Fault detection, diagnosis and prognosis of rolling element bearings frequency domain methods and hidden markov modeling[D]. Cleveland, US:Case Western Reserve University, 2004.
[7] Qiu H, Lee J, Lin J, et al. Wavelet filter-based weak signature detection method and its application on rolling bearing prognostics[J]. Journal of Sound and Vibration, 2006,289(2):1066-1090.
[8] Boskoski P, Juricic D. Fault detection of mechanical drives under variable operating conditions based on wavelet packet Renyi entropy signatures [J]. Mechanical Systems and Signal Processing, 2012,31(15): 369-381.
[9] Huang J, Hu X G, Geng X. An intelligent fault diagnosis method of high voltage circuit breaker based on improved EMD energy entropy and multi-class support vector machine [J]. Electric Power Systems Research, 2011,81(12): 400-407.
[10] Zhao S F, Liang L, Xu G H. Quantitative diagnosis of a spall-like fault of a rolling element bearing by empirical mode decomposition and the approximate entropy method [J]. Mechanical Systems and Signal Processing, 2013,40(4):154-177.
[11] Zheng J D, Cheng J S, Yang Y. A rolling bearing fault diagnosis approach based on LCD and fuzzy entropy [J]. Mechanism and Machine Theory, 2013,70(12): 441-453.
[12] Cong F Y, Chen J, Dong G M,et al. Short-time matrix series based singular value decomposition for rolling bearing fault diagnosis [J]. Mechanical Systems and Signal Processing, 2013,34(1):218-230.
[13] Wang X, Liu C W, Bi F R,et al. Fault diagnosis of diesel engine based on adaptive wavelet packet and EEMD-fractal dimension [J]. Mechanical Systems and Signal Processing, 2013(41):581-597.
[14] Zhang X M. Calculating the fractal dimension of the diesel vibration signals [J]. Energy Procedia, 2011,13(5):1947-1955.
[15] 李兵, 张培林,任国全,等. 形态学广义分形维数在发动机故障诊断中的应用[J].振动与冲击,2011,30(10):208-211.
LI Bing,ZHANG Pei-lin,REN Guo-quan,et al.Application of mathematical- morphology- based generalized fractal dimensions in engine fault diagnosis[J].Journal of Vibration and Shock, 2011,30(10):208-211.(in Chinese)
[16] 李兵,张培林,米双山,等. 齿轮故障信号多重分形维数的形态学 计算方法[J]. 振动、测试与诊断,2011,31(4):450-453,534.
LI Bing, ZHANG Pei-lin, MI Shuang-shan, et al. Mathematical morphology based on multifractal dimensions for gear fault diagnosis [J]. Journal of Vibration, Measurement & Diagnosis, 2011,31(4):450-453, 534.(in Chinese)
[17] Medjaher K, Skima H, Zerhouni N. Condition assessment and fault prognostics of micro electromechanical systems [J]. Microelectronics Reliability, 2014,54(1): 143-151.
[18] Li Y L, Shen Y. An automatic fuzzy C-means algorithm for image segmentation [J].Soft Computing-A Fusion of Foundations, Methodologies and Applications, 2010, 14(2): 123-128.
[19] 张玲玲,廖红云,曹亚娟,等. 基于EEMD和模糊C均值聚类算法诊断发动机曲轴轴承故障[J].内燃机学报, 2011,29(4): 332-336.
ZHANG Ling-ling, LIAO Hong-yun,CAO Ya-juan, et al. Diagnosis on crankshaft bearing fault based on EEMD and fuzzy C mean clustering arithmetic[J]. Transactions of CSICE, 2011,29(4): 332-336. (in Chinese)
[20] Chaudhuri B B, Sarkar N. Texture segmentation using fractal dimension [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995,17(1):72-77.
[21] Maragos P. Measuring the fractal dimension of signals: morphological covers and iterative optimization[J]. IEEE Transactions on Signal Processing, 1993, 41(1):108-121.
[22] Li B, Zhang P L, Wang Z J,et al. Morphological covering based generalized dimension for gear fault diagnosis [J].Nonlinear Dynamics,2012,67(4):2561-2571.
[23] 李兵,张培林,米双山,等. 齿轮故障信号多重分形维数的形态学 计算方法[J]. 振动、测试与诊断,2011,31(4):450-453.
LI Bing, ZHANG Pei-lin, MI Shuang-shan, et al.Mathematical morphology based on multifractal dimensions for gear fault diagnosis [J]. Journal of Vibration,Measurement & Diagnosis,2011,31(4):450-453. (in Chinese)
[24] Maragos P. Measuring the fractal dimension of signals: morphological covers and iterative optimization [J]. IEEE Transactions on Signal Processing, 1993. 41(1):108-121.
[25] 徐东,徐永成,陈循,等. 基于EMD的灰色模型的疲劳剩余寿命预测方法研究[J]. 振动工程学报,2011,24(1):104-110.
XU Dong, XU Ji-cheng, CHEN Xun, et al. Residual fatigue life prediction based on grey model and EMD[J]. Journal of Vibration Engineering, 2011,24(1):104-110.(in Chinese)
[26] Li P, Zhao S L, Zhang R C.A cluster analysis selection strategy for supersaturated designs [J]. Computational Statistics & Data Analysis,2010,54(6):1605-1612.
[27] 潘玉娜,陈进,李兴林. 基于模糊C-均值的设备性能退化评估方法[J]. 上海交通大学学报, 2009,43(11):1795-1797.
PAN Yu-na,CHEN Jin, LI Xing-lin.Fuzzy c-means based equipment performance degradation assessment[J]. Journal of Shang Hai Jiaotong University, 2009,43(11):1795-1797. (in Chinese)
[28] 徐红波,陈国华,王新华. 基于ARMA模型双谱分布与FCM方法的轴承故障识别[J]. 华南理工大学学报:自然科学版,2012,40(7):78-82.
XU Hong-bo, CHEN Guo-hua,WANG Xin-hua.Fault identification of bearings based on bispectrum distribution of ARMA model and FCM method[J]. Journal of South China University of Technology :Natural Science Edition, 2012,40(7):78-82. (in Chinese)
[29] 张淑清,孙国秀,李亮. 基于LMD近似熵和FCM聚类的机械故障诊断研究[J]. 仪器仪表学报,2013,34(3):714-720.
ZHANG Shu-qing, SUN Guo-xiu, LI Liang.Study on mechanical fault diagnosis method based on LMD approximate entropy and fuzzy C-means clustering[J]. Chinese Journal of Scientific Instrument, 2013,34(3):714-720. (in Chinese)
[30] Koskinen L, Astola J. Soft morphological filters: a robust morphological filtering method [J]. Journal of Electronic Imaging, 1994, 3(1):60-70.
[31] Ramasso E, Gouriveau R. Prognostics in switching systems: evidential markovian classification of real-time neuron-fuzzy predictions damage propagation modeling for aircraft engine run-to-failure simulation[C]∥IEEE Frontiers of Prognostics and Health Management conference. Macau:IEEE,2010.
[32] Blake M P, Mitchel W S. Vibration and acoustic measurement[M]. New York:Spartan Books, 1972.

文章所在专题

智能系统与装备

539

Accesses

0

Citation

Detail

段落导航
相关文章

/