半导体激光夜视系统采用激光器作为照明源,可在全黑的夜间条件下获得景物图像。但在公安和交通领域应用中,由于激光能量较集中,对车船类型及号牌信息的提取造成了困难。为此,对夜视图像的成像过程中导致图像变坏的原因进行了分析,并利用图像灰度变换、边缘检测、特征量选择及模板匹配、图像帧积累等图像处理技术改善了夜视图像的质量。实现了车船的类型及号牌的识别。该项技术也可用于军事及其他民用领域。
Abstract
Semiconductor laser night-vision system using laser as light source, can get the night scene in total darkness conditions at night and low cost.So this system has been widely used in the field of public security, counter-terrorism and transportation. Due to the laser energy is relatively concentrated , the part of license plate is strong light reflection will cause saturation phenomenon,if reduce the illumination energy,also cause the part of the car body too dim to identification, all these will cause difficulties for the type of travel and license plate information extraction.The image processing techniques of semiconductor laser night-vision aim at this problem, night-vision scene in the imaging process, the reasons that lead to deterioration of the image analysis, on this basis, the use of the image gray level transformation, edge detection, feature selection, pattern matching and image frame image processing technology to dispose of the night scene, and availably improve of laser night-vision image quality. Realize the type of travel and number plate recognition,the technology can also be used for military and other civilian areas.
关键词
光电子学与激光技术 /
半导体激光 /
夜视成像 /
图像处理 /
号牌识别
{{custom_keyword}} /
Key words
optoelectronics and laser /
semiconductor laser /
night vision imaging /
image processing /
number plate recognition
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] DAIY, MA H Q, LIU J L, et al. A high performance license plater cognition system based on the web[C]∥2001 IEEE Proceedings on Intelligent Transportation System. US: IEEE, 2001: 325-329.
[2] ForestiG L, Murino V, Regazzoni C.Vehicle recognition and tracking from road image sequences[J].IEEE, Transactions on Vehicular Technology, 1999,48(1):301-318.
[3] 李小平,曲大成. 车辆牌照识别系统可靠性问题的研究[J]. 北京理工大学学报, 2001,21(1):11-14.
LI Xiao-ping,QU Da-cheng. Reliability of an automobile license plate identification system[J]. Journal of Beijing Indtitute of Technology, 2001,21(1):11-14. (in Chinese)
[4] 李楠,刘源,韩东方.基于DM642开发的嵌入式图像系统硬件实现[J].工业控制计算机,2005,18(8):22-23.
LI Nan, LIU Yuan, HAN Dong-fang. Embedded image system hardware implementation based on DM642 development[J].Industrial Control Computer, 2005,18(8):22-23.(in Chinese)
[5] LaiA H S, Fung G S K, Yung N H C.Vehicle type classification from visual-based dimension estimation[C]∥Proceedings of Intelligent Transportation Systems, US: IEEE, 2001:201-206.
[6] 郭勇,吴乐南. 行驶车辆的牌照识别系统[J]. 电子工程师,2000,(11):38-41.
GUO Yong,WU Yue-nan. The recognition system of moving vehicles′ license plates[J]. Electronic Engineer,2000,(11):38-41.(in Chinese)
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}