低温陶瓷共烧毫米波带状线带通滤波器优化设计

李成国;牟善祥;张忠传

兵工学报 ›› 2009, Vol. 30 ›› Issue (2) : 140-143.

兵工学报 ›› 2009, Vol. 30 ›› Issue (2) : 140-143. DOI: 10.3969/j.issn.1000-1093.2009.02.003
论文

低温陶瓷共烧毫米波带状线带通滤波器优化设计

  • 李成国,牟善祥,张忠传
作者信息 +

Optimal Design of Strip Line BPF in Millimeter Wave on Low- temperature Cofired Ceramic

  • LI Cheng-guo, MU Shan-xiang, ZHANG Zhong-chuan
Author information +
文章历史 +

摘要

采用低温陶瓷共烧( LTCC)技术设计了具有强阻带特性的低损耗全嵌入式带通滤波器(BPF),提出了折叠边缘耦合带状线滤波器的小型化设计。为解决折叠耦合带状线的直角拐角引起的难以分析和设计难题,提出了神经网络结合遗传算法的优化设计方法。利用HFSS软件对滤波器接地通孔的位置和数目进行优化,改善了滤波器的传输特性。滤波器中心频率的插入损耗小于0.7 dB,反射损耗小于26 dB,滤波器尺寸2.3 mm×2.3 mm×0.41 mm,实现了小型化设计。

Abstract

A low-loss fully embedded bandpass filter (BPF) with enhanced stopband characteristics was designed by low-temperature co-fired ceramic (LTCX^ technology. rThe folded parallel-coupled niters in edge-coupled strip line with miniaturization form were proposed. To resolve right corner analysis and design of folded coupled strip line, an opetimal design method was put forward by combining neu?ral network with genetic algorithm. The location and number of grounded via were optimized by HF- Sb, to improve transmission characteristics of the filter. The measured insertion loss is less than 0. I dB at a center frequency, and the reflection loss is less than 26 dB. Dimension of the niter is 2.3 mm X 2.3 mmX 0.41 mm, wmch realizes design of the filter with miniaturization.

关键词

电子技术 / 低温陶瓷共烧 / 耦合带状线 / 嵌入 / 折叠 / 接地通孔 / 神经网络 / 遗传算注

Key words

eletronics / low-temperature co-fired grounded via / neural network / genetic algorithm

引用本文

导出引用
李成国,牟善祥,张忠传. 低温陶瓷共烧毫米波带状线带通滤波器优化设计. 兵工学报. 2009, 30(2): 140-143 https://doi.org/10.3969/j.issn.1000-1093.2009.02.003
LI Cheng-guo, MU Shan-xiang, ZHANG Zhong-chuan. Optimal Design of Strip Line BPF in Millimeter Wave on Low- temperature Cofired Ceramic. Acta Armamentarii. 2009, 30(2): 140-143 https://doi.org/10.3969/j.issn.1000-1093.2009.02.003

参考文献

[1] Bruce A. Kopp, A. Shaun rrancomacaro. Miniaturized strip line circuitry utilizing low temperature cofired ceramic (LTCC) tech?nology [ J ].IEEE MTT-S Int Microwave Symp, 1992,3(6): 1513-1516.
[2] Kitazawa T. Loss calculation of single and coupled strip lines by extended spectral domain approach [ J].IEEE Microwave and Guided Wave Letters, 1993,3(7) :211 - 213.
[3] 顾墨琳.微波固态电路设计[M].南京:南京电子技术研究所, 1991: 11-41.
Gu Mo-lin. Microwave solid state circuit design[M]. Nanjing: Nanjing Research Institute of Electronic Technology, 1991 ; 11 一 14. (in Chinese)
[4] Shelton J D. Impedances of offset parallel-coupled strip transmis?sion lines [ J ]. IEEE Trans on Microwave lneory and Tech?niques, 1966,MTT-14: 7-15.
[5] Cohn S B. Parallel coupled transmission-line resonator lilters[ J]. IRE Trans on Microwave Theory and Techniques, 1958,MTT- 6:223-231.
[6] Horton M C, Wenzel R J. General theory and design of optimum quarter wave TEM filters [J ] . IEEE Trans on Microwave Theory and Techniques, 1965, MTT-13(3) :316 - 327.
[7] Cho Y H, Lee Y C. A fully embedded LTCC stripline parallel coupled BPF for 40 GHz BMWS application [ J ]. IEEE Radio Wireless Conf, 2004:75 - 78.
[8] Chang-Ho Lee, Albert Sutono, Sangwoo Han, et al. A compact LTCC-based ku-band transmitter module[ J ]. IEEE Trans on Ad?vanced Packaging, 2002, 25(3) :374 - 381.
[9] Haupt R L. An introduction to genetic algorithms for electromag- netics[j]. IEEE Antennas and Propagation Magazine, 1995, 37 (2): 7-15.
[10] Johnson J M, Rahmat-Samn V. Genetic algorithms in engineer?ing electromagnetics [ J ]. IEEE Antenna and Propagation Maga?zine, 1997, 39(4): 7-21.

323

Accesses

0

Citation

Detail

段落导航
相关文章

/