身管液冷技术在陆基防空反导小口径自动炮和舰载中、小口径火炮中被广泛采用,研究身管液冷状态下的温度分布对于火炮发射安全性和武器效能具有重要意义。以某速射火炮为对象,采用热一流一固耦合的研究方法,将传统的温度场计算方法割裂的固体计算区域和流体计算区域祸合在一起,建立了统一的流固传热数学模型。此外,使用计算流体动力学( CFD)计算方法,计算了材料性能与温度相关的身管系统的瞬时温度历程,并讨论了不同速度的冷却水流对身管温度的影响。研究表明:炮身水流外冷却方式对于外壁的冷却效果非常明显,沿径向向内,水流带来的温度降幅逐渐减少;靠近炮管外壁表面的冷却水流薄层温度变化很大;当入口水流超过~定速度时,通过增加流速带来的身管温度场下降很小。
Abstract
The barrel liquid-cooling technology is widely used in ground-based air-defense and anti-mis?sile small-caliber automatic gun and ship-borne medium or small caliber guns. It is important to study the temperature distribution of the barrel where liquid-cooling technology is used for gun lunching safe?ty and weapon efnciency. lakmg a certain kind of rapid-fire gun as researched object, a liquid-solid u- nitized mathematic model oi heat transfer was set up by a thermal-liquid-solid coupled method coupling solid region with liquid one separated in traditional calculation method of temperature field. The tran?sient temperature oi the barrel system, whose material properties is related to temperature, was calcu?lated by CFD method, meanwhile the velocity effects of cooling water on barrel temperature were also discussed. The study result shows that the water flow cooling method for the barrel has obviously fa?vorable effect on the outer-surface cooling, along the radial direction inward, the amplitude of temper?ature decreasing caused by water flow fades out gradually; the temperature of the thin cooling-water sheet near the barrel’s outer surface changes a lot; when the flow velocity near the entrance exceeds some value, the barrel temperature field decreases just a little by increasing the flow velocity.
关键词
热学 /
流固 /
耦合 /
身管 /
温度场 /
仿真 /
冷却
{{custom_keyword}} /
Key words
thermology /
liquid-solid /
couple /
barrel /
temperature field /
simulation /
cooling
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[I] O'Hara G P. Simulation of thermal problems m rapid fire guns [C]. Proc of the 1992 Summer Computer Simulation Conference, Twenty-Fourth Annual Computer Simulation Conference, 1992: 673-679.
[2] Lawton B. The influence of additives on the temperature, heat transfer, wear, fatigue life, and self ignition characteristics of a 155 mm gun[ J]. Journal of Pressure Vessel Technology, 2003, 76(12):315-320.
[3] 罗来科,宣益民,韩玉阁.坦克炮管温度场的有限元计算[J]. 兵工学报,2005,26(1) :6-9.
LUO Lai-ke,XUAN Yi-min, HAN Yu-ge. Finite element calcu?lation of the temperature field for tank gun barrel[JJ . Acta Arma?mentarii, 2005,26(1) :6 — 9. (in Chinese)
[4] 奥尔洛夫B B,拉尔曼9 K.炮身构造与设计[M].北京:国防 エ业出版社,1982:205.
Opjiob Б B,JiapmanЭ K- Barrel structure and design [ M ]. Bei?jing: National Defense Industry Press, 1982:205. (in Chinese)
[5 J Stratford B S, Beavers G S. The calculation the compressible tur?bulent boundary layer in arbitrary pressure bradient-a correlation of certain previous methods[Rj. JNew York: Aeronautical Re?search Council R&M, 1961.
[6] 工程材料实用手册编辑委员会.工程材料实用手册[M].北 京:中国标准出版社,1989:342.
Editorial committee for engineering material handbook. Engineer?ing material handbook [ M]. Beijing: Standards Press of China, 1989: 342. (in Chinese)
[7] 吴永海.承受热冲击的大口径机枪枪管的热效应分析[J].南 京理工大学学报,2007,31(1):1-5.
WU Yong-hai. Research on thermal efiect of the large-calibre ma?chine gun barrel under thermal shock[j]. Journal of Nanjing Uni?versity of Science and Technology, 2007,31(1) : I - 5. (in Chi?nese)
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}