海上无人化试验训练体系构建问题研究

王来贺,崔雪静

兵工学报 ›› 2024, Vol. 45 ›› Issue (10) : 3445-3461.

PDF(10677 KB)
PDF(10677 KB)
兵工学报 ›› 2024, Vol. 45 ›› Issue (10) : 3445-3461. DOI: 10.12382/bgxb.2023.0633
论文

海上无人化试验训练体系构建问题研究

  • 王来贺*(), 崔雪静
作者信息 +

On the Construction of Marine Unmanned Test and Training System

  • WANG Laihe*, CUI Xuejing
Author information +
文章历史 +

摘要

战争无人化的发展趋势下,无人化作战力量的培育与运用已成为试验与训练领域的重要拓展方向。综合分析海上无人作战系统的技术特点与无人化新型作战能力的生成属性,构建完成海上无人化试验训练体系总体框架;围绕海上无人化试验训练任务组织实施问题,阐述领域发展背景,探讨促进领域快速发展的关键举措;面向新时期实战化、体系化的试验训练任务组织实施需求,分析信息化、无人化技术发展背景下,海上试训蓝军和海战场试验训练资源建设的整体规划与主要思路,形成海上无人化试验训练任务组织实施方法论和海战场试验训练装备体系支撑。研究结果可为海上无人化试验训练任务组织实施、装备建设管理、试训蓝军组织运用等相关活动的开展提供参考与借鉴。

Abstract

Under the development trend of unmanned warfare, the cultivation and application of unmanned combat force have become an important expansion direction in the fields of test and training. The technical characteristics of marine unmanned combat systems and the generation attributes of new unmanned combat capabilities are comprehensively analyzed. On the basis of this, an overall framework of marine unmanned test and training system is constructed. Focusing on the organization and implementation of unmanned marine test and training tasks, the developmental background of the field is elaborated, and the key measures to promote the rapid development of the field are explored. Facing the requirements of actual combat-oriented and systematic organization implementation for test and training missions in the new era, this paper discusses the overall planning and general ideas for constructing the marine battlefield test training resources and the sea test training blue army under the development background of informationization and unmanned technologies, and forms a methodology for organizing and implementing the unmanned marine test and training tasks and the system support from sea battlefield test training equipment. The The research results can provide reference for the implementation of related activities, such as the organization and implementation of marine unmanned test and training tasks, the construction and management of equipment, the organization and application of test and training blue army, and so on.

关键词

无人化试验 / 无人化训练 / 装备建设管理 / 试训蓝军

Key words

unmannedtest / unmannedtraining / constructionandmanagementofequipment / testandtrainingbluearmy

引用本文

导出引用
王来贺,崔雪静. 海上无人化试验训练体系构建问题研究. 兵工学报. 2024, 45(10): 3445-3461 https://doi.org/10.12382/bgxb.2023.0633
WANG Laihe, CUI Xuejing. On the Construction of Marine Unmanned Test and Training System. Acta Armamentarii. 2024, 45(10): 3445-3461 https://doi.org/10.12382/bgxb.2023.0633
中图分类号: E917   

参考文献

[1]刘遵飞, 邹波, 陈续麟, 等. 有人与无人联合作战模式下的装备体系结构建模与效能评估[J]. 兵工学报, 2022, 43(1): 155-161.
LIU Z F, ZOU B, CHEN X L, et al. Architecture modeling and effectiveness evaluation of equipment system under manned and unmanned joint operation mode[J]. Acta Armamentarii, 2022, 43(1): 155-161. (in Chinese)
[2]LIN J, YU Q Z, QUAN Z J, et al. Research on task assignment of multi-UAVs based on improved two-stage hierarchical auction in collaborative defense scenario[J]. Lecture Notes in Electrical Engineering, 2023: 3854-3864.
[3]黄松平, 唐姝, 姜华, 等. 无人作战及其指挥控制问题探析[J]. 火力与指挥控制, 2023, 48(4): 1-7.
HUANG S P, TANG S, JIANG H, et al. Analysis on unmanned combat and its command and control problems[J]. Fire Control & Command Control, 2023, 48(4): 1-7. (in Chinese)
[4]王强, 高云翔, 杭爽, 等. 基于综合集成法的军事战略能力评估方法[J]. 系统工程与电子技术, 2023, 45(8): 2312-2317.
WANG Q, GAO Y X, HANG S, et al. Military strategic capability evaluation method based on meta-synthetic approach[J]. Systems Engineering and Electronics, 2023, 45(8):2312- 2317. (in Chinese)
[5]刘麦迪, 夏博远, 杨志伟, 等. 考虑集群协同特性的马赛克战体系能力需求满足度评估方法[J]. 系统工程理论与实践, 2023, 43(8): 2447-2466.
LIU M D, XIA B Y, YANG Z W, et al. Capability requirement satisfaction degree evaluation considering cluster collaboration characteristics for mosaic warfare system of systems[J]. Systems Engineering—Theory & Practice, 2023, 43(8): 2447-2466. (in Chinese)
[6]邱志明, 孟祥尧, 马焱, 等. 海上无人系统发展及关键技术研究[J]. 中国工程科学, 2023, 25(3): 74-83.
QIU Z M, MENG X Y, MA Y, et al. Development and key technologies of maritime unmanned systems[J]. Strategic Study of CAE, 2023, 25(3): 74-83. (in Chinese)
[7]LIANGX, CHEN G D, ZHAO S R, et al. Moving target tracking method for unmanned aerial vehicle/unmanned ground vehicle heterogeneous system based on AprilTags[J]. Measurement & Control, 2020, 53(3/4): 427-440.
[8]PARKD, OH K. Study on development of korean unmanned systems through analysis of U.S. unmanned systems policy[J]. Journal of Aerospace System Engineering, 2021, 15(3): 65-70.
[9]王彤, 李磊, 蒋琪. 美国“快速轻量自主”项目推进无人系统自主能力发展[J]. 无人系统技术, 2019, 2(1): 58-64.
WANG T, LI L, JIANG Q. DARPA fast lightweight autonomy program promotes unmanned system autonomy development[J]. Unmanned Systems Technology, 2019, 2(1): 58-64. (in Chinese)
[10]岳丽军, 王凡, 赵朝先. 海战场无人作战体系协同运用与指挥控制设想[J]. 指挥控制与仿真, 2022, 44(4): 1-7.
YUE L J, WANG F, ZHAO C X. Cooperative application and command and control assumption of unmanned combat system in sea battlefield[J]. Command Control& Simulation, 2022, 44(4):1-7. (in Chinese)
[11]张路, 邵正途, 翁呈祥, 等. 美军有/无人机协同作战运用及关键技术研究[J]. 战术导弹技术, 2022, (6): 128-137.
ZHANG L, SHAO Z T, WENG C X, et al. Research on application and key technologies of U.S. forces manned/unmanned aerial vehicle cooperative combat[J]. Tactical Missile Technology, 2022, (6): 128-137. (in Chinese)
[12]刘闯, 鱼小军, 张婷, 等. 无人集群装备仿真试验关键技术现状及趋势[J]. 航空学报, 2022, 43(增刊1): 21-33.
LIU C, YU X J, ZHANG T, et al. Research status and trend of key technologies for simulation test of unmanned swarm equipment[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(S1): 21-33. (in Chinese)
[13]YANGY K, XIE H, LIU H. Development and application of unmanned virtual simulation HIL testing platform[C]∥Proceedings of the 3rd Conference on Vehicle Control and Intelligence. Hefei, China: IEEE, 2019.
[14]赵蕊蕊, 于海跃, 游雅倩, 等. 无人集群试验评估现状及技术方法综述[J]. 系统工程与电子技术, 2024, 46(2): 570-585.
ZHAO R R, YU H Y, YOU Y Q, et al. Review on current development and technologies of unmanned swarm test evaluation[J]. Systems Engineering and Electronics,2024, 46(2): 570-585. (in Chinese)
[15]KONGW W, FENG W Q, ZHENG Y, et al. A test and evaluation framework for unmanned surface vehicle[C]∥Proceedings of the IEEE 7th Data Driven Control and Learning Systems Conference. Enshi, China: IEEE, 2018.
[16]JIAN P, YANG Z W, YANG K W. Operational effectiveness evaluation of the swarming UAVs combat system based on a system dynamics model[J]. IEEE Access, 2019, 7: 25209 -25224.
[17]王哲, 李建华, 刘子扬. 基于功能依赖的网络信息体系建模及重心分析[J]. 系统工程与电子技术, 2021, 43(10): 2876- 2883.
WANG Z, LI J H, LIU Z Y. Modeling and center of gravity analysis for networked information system of systems based on function dependency[J]. Systems Engineering and Electronics, 2021, 43(10): 2876-2883. (in Chinese)
[18]孙旭涛, 袁刚, 向哲. 导弹武器作战试验中虚拟蓝军体系结构设计[J]. 计算机应用与软件, 2018, 35(4): 195-198.
SUN X T, YUAN G, XIANG Z. The architecture design of virtual blue army system in missile weapon equipment combat test[J]. Computer Applications and Software, 2018, 35(4): 195-198. (in Chinese)
[19]杨继坤, 张传友, 常秀丰, 等. 海军试训蓝军体系建设与运用研究[J]. 现代防御技术, 2017, 45(2): 22-29.
YANG J K, ZHANG C Y, CHANG X F, et al. Systematic construction and operation for navy test and training blue force[J]. Modern Defence Technology, 2017, 45(2): 22-29. (in Chinese)
[20]邱志明, 李恒, 周玉芳, 等. 模拟仿真技术及其在训练领域的应用综述[J]. 系统仿真学报, 2023, 35(6): 1131-1143.
QIU Z M, LI H, ZHOU Y F, et al. Summary of simulation technology and its application in training field[J]. Journal of System Simulation, 2023, 35(6): 1131-1143. (in Chinese)
[21]王凯, 蒲玮, 郭苏, 等. 装备体系试验理论框架探析[J]. 装甲兵学报, 2022(1): 50-55.
WANG K, PU W, GUO S, et al. A probe into theory framework of equipment system tests[J]. Journal of Armored Forces, 2022(1):50-55. (in Chinese)
[22]王新尧, 曹云峰, 孙厚俊, 等. 基于DoDAF的有人/无人机协同作战体系结构建模[J]. 系统工程与电子技术, 2020, 42(10): 2265-2274.
WANG X Y, CAO Y F, SUN H J, et al. Modeling for cooperative combat system architecture of manned/unmanned aerial vehicle based on DoDAF[J]. Systems Engineering and Electronics, 2020, 42(10): 2265-2274. (in Chinese)
[23]WUA, YANG R N, LIANG X L, et al. Visual range maneuver decision of unmanned combat aerial vehicle based on fuzzy reasoning[J]. International Journal of Fuzzy Systems, 2021, 24(1):519-536.
[24]SHIL, CHEN J B, HU J X, et al. An evaluation method of autonomy for marine unmanned vehicles[C]∥Proceedings of the 9th Data Driven Control and Learning Systems Conference. Liuzhou, China: IEEE,2020.
[25]毕文豪, 张梦琦, 高飞, 等.无人机集群任务分配技术研究综述[J]. 系统工程与电子技术, 2024, 46(3): 922-934.
BI W H, ZHANG M Q, GAO F, et al. Review on UAV swarm task allocation technology[J]. Systems Engineering and Electronics, 2024, 46(3): 922-934. (in Chinese)
[26]李超, 王瑞星, 黄建忠, 等. 稀疏奖励下基于强化学习的无人集群自主决策与智能协同[J]. 兵工学报, 2023, 44(6): 1537-1546.
LI C, WANG R X, HUANG J Z, et al. Autonomous decision-making and intelligent collaboration of UAV swarms based on reinforcement learning with sparse rewards[J]. Acta Armamentarii, 2023, 44(6): 1537-1546. (in Chinese)
[27]徐乐同, 刘方, 肖玉杰, 等. 国外无人反水雷装备及技术发展[J]. 兵工学报, 2022, 43(2): 64-70.
XU L T, LIU F, XIAO Y J, et al. Foreign unmanned equipment and technology development in mine countermeasures[J]. Acta Armamentarii, 2022, 43(2): 64-70. (in Chinese)
[28]杜梓冰, 陈银娣. 无人机自主作战能力试验评价技术综述[J]. 航空兵器, 2021, 28(6): 58-65.
DU Z B, CHEN Y D. Review on testing and evaluation of UAV's autonomous operational ability[J]. Aero Weaponry, 2021, 28(6):58-65. (in Chinese)
[29]常晓飞, 蒋邓怀, 姬晓闯, 等. 无人作战系统仿真发展综述[J]. 无人系统技术, 2021, 4(6): 28-36.
CHANG X F, JIANG D H, JI X C, et al. Summary of simulation development of unmanned combat system[J]. Unmanned Systems Technology, 2021, 4(6): 28-36. (in Chinese)
[30]纪广, 郝建国, 张振伟. 面向无人机作战的虚拟孪生系统设计方案[J]. 兵工学报, 2022, 43(8): 1902-1912.
JI G, HAO J G, ZHANG Z W. Design scheme of virtual twin system for UAV combat[J]. Acta Armamentarii, 2022, 43(8): 1902-1912. (in Chinese)
[31]张宇, 郭齐胜, 樊延平. 地面无人作战系统作战效能评估方法研究[J]. 计算机仿真, 2022, 39(1): 14-20.
ZHANG Y, GUO Q S, FAN Y P. Research on operational effectiveness evaluation method of ground unmanned combat system[J]. Computer Simulation, 2022, 39(1): 14-20. (in Chinese)
[32]刘树光, 邵明军. 无人机自主作战效能评估技术研究综述[J]. 光电与控制, 2024, 31(4): 55-64.
LIU S G, SHAO M J. Review on autonomous combat effectiveness evaluation techniques of UAVs[J]. Electronics Optics & Control,2024, 31(4): 55-64. (in Chinese)
[33]赵丹玲, 谭跃进, 李际超, 等. 基于异质网络的武器装备体系结构抗毁性研究[J]. 系统工程理论与实践, 2019, 39(12):3197-3207.
ZHAO D L, TAN Y J, LI J C, et al. Research on structural robustness of weapon system-of-systems based on heterogeneous network[J]. Systems Engineering—Theory & Practice, 2019, 39(12): 3197-3207. (in Chinese)
[34]董海滨, 王暖臣, 穆歌, 等. 网络信息体系标准体系研究现状分析[J]. 中国电子科学研究院学报, 2023, 18(2): 189-194.
DONG H B, WANG N C, MU G, et al. Analysis on the research status of the standard system of network information system[J]. Journal of CAEIT, 2023, 18(2): 189-194. (in Chinese)br>br>
PDF(10677 KB)

文章所在专题

弹药技术

Accesses

Citation

Detail

段落导航
相关文章

/