为改善聚叠氮缩水甘油醚(GAP)基黏合剂的低温力学性能,以GAP和环氧乙烷-四氢呋喃共聚醚(PET)为软段,甲苯-2,4-二异氰酸酯(TDI)偶联的丁二醇为硬段,通过扩链聚合反应合成GAP/PET嵌段型热塑性聚氨酯弹性体; 分别采用红外光谱(FT-IR)、核磁共振(NMR)、差示扫描量热分析(DSC)、动态热机械分析(DMA)、热重分析(TGA)和万能材料试验机对其化学结构、玻璃化转变温度、热稳定性和低温拉伸性能进行表征。结果表明,随着PET含量的提高,GAP/PET嵌段型热塑性聚氨酯的Tg明显降低,当PET与GAP摩尔比为1:1时,GAP/PET嵌段型热塑性聚氨酯的Tg为-37.7℃,在-40℃低温环境发生韧性断裂,断裂强度为25.78MPa,断裂伸长率为379.4%,具有优异的低温力学性能; 同时TGA试验表明GAP/PET嵌段型热塑性聚氨酯Td>220℃,热稳定性好。
Abstract
In order to enhance the cryogenic mechanical properties of glycidyl azide polymer(GAP)based polymeric binders, GAP/PET block thermoplastic elastomers were synthesized via a chain extension polymerization using GAP and ethylene oxide-tetrahydrofuran copolyether(PET)as soft segments, and toluene diisocyanate(TDI)extended butane diol(BDO)as hard segments. The molecular structure, glass transition temperature(Tg), thermal stability and cryogenic mechanical properties of thermoplastic elastomers were investigated by fourier transform-infrared spectroscopy(FT-IR), nuclear magnetic resonance spectrometry(NMR), differential scanning calorimetry(DSC), dynamic mechanical analysis(DMA), thermal gravimetric analyzer(TGA)and universal testing machine respectively. The results show that the Tg of the thermoplastic elastomers are evidently decreased with increasing the content of PET. When the mole ratio of PET/GAP is 1:1, the Tg is found to be -37.7℃, and the thermoplastic elastomer is ductile rupture under the low temperature of -40℃, the tensile strength at break is 25.78MPa, and the corresponding elongation is 379.4%. Therefore, the thermoplastic elastomers exhibit good cryogenic mechanical properties. Meanwhile, the TGA results indicate that the Td of the thermoplastic elastomers are higher than 220℃ and exhibit good thermal stability.
关键词
物理化学 /
聚叠氮缩水甘油醚 /
GAP /
PET /
嵌段热塑性弹性体 /
低温力学性能
{{custom_keyword}} /
Key words
physical chemistry /
glycidyl azide polymer /
GAP /
PET /
block thermoplastic elastomers /
cryogenic mechanical properties
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] BOSHRA I K, AHMED E, GUO L, et al. Composite solid rocket propellant based on GAP polyurethane matrix with different binder contents[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2020, 43(4):362-367.
[2]HAFNER S, KEICHER T, KLAPOETKE T M. Copolymers based on GAP and 1,2-epoxyhexane as promising prepolymers for energetic binder systems[J]. Propellants, Explosives, Pyrotechnics, 2018, 43(2): 126-135.
[3]BOOPATHI S K, HADJICHRISTIDIS N, GNANOU Y, et al. Direct access to poly(glycidyl azide)and its copolymers through anionic(co-)polymerization of glycidyl azide[J]. Nature Communication, 2019,10: 293-301.
[4]MANU S K, VARGHESE T L, MATHEW S, et al. Compatibility of glycidyl azide polymer with hydroxyl terminated polybutadiene and plasticizers[J]. Journal of Propulsion and Power, 2009, 25(2): 533-536.
[5]DING Y, HU C, GUO X, CHE Y, et al. Structure and mechanical properties of novel composites based on glycidyl azide polymer and propargyl-terminated polybutadiene as potential binder of solid propellant[J]. Journal of Applied Polymer Science, 2014, 131(7): 40007-40014.
[6]肖立柏,任晓宁,高红旭,等.微量热法研究GAP与BPS固化反应[J].火炸药学报,2021,44(1):50-54.
XIAO Li-bai, REN Xiao-ning, GAO Hong-xu, et al. Study on curing reaction of GAP and EPS by microcalorimetry[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2021, 44(1): 50-54.
[7]LV Y, LUO Y J, GE Z. Research development of energetic thermoplastic elastomers[J]. New Chemical Materials, 2008, 36(10): 31-33.
[8]SIKDER A K, REDDY S. Review on energetic thermoplastic elastomers(ETPEs)for military science[J]. Propellants, Explosives, Pyrotechnics, 2013, 38(1): 14-28.
[9]李冰珺,赵一搏,李小萌,等. 无规嵌段型PBAMO/GAP含能热塑性弹性体的合成与表征[J]. 含能材料, 2015, 23(7): 624-628.
LI Bing-jun, ZHAO Yi-bo, LI Xiao-meng, et al. Synthesis and characterization of PBAMO/GAP random block ETPE[J]. Chinese Journal of Energetic Materials, 2015, 23(7): 624-628.
[10]胡义文, 邓敏, 周伟良, 等. GAP-PCL含能热塑性弹性体的合成及力学性能[J]. 固体火箭技术, 2016, 39(4):492-496.
HU Yi-wen, DENG Min, ZHOU Wei-liang, et al. Synthesis and mechanical properties of energetic thermoplastic elastomers based on glycidyl azide polymer and polycaprolactone[J]. Joumal of Solid Rocket Technology, 2016, 39(4):492-496.
[11]王旭鹏, 罗运军, 葛震, 等. GAP/PET 聚氨酯粘合剂胶片的制备及其性能研究[J]. 化工新型材料, 2009, 37(12):74-77.
WANG Xu-peng, LUO Yun-jun,GE Zhen,et al. Study on properties of GAP/PET polyurethane binder films[J]. New Chemical Materials, 2009, 37(12):74-77.
[12]王旭鹏, 罗运军, 王晓青, 等. GAP-PET双软段含能聚氨酯弹性体的性能[J]. 化工学报, 2010, 61(3):784-788.
WANG Xu-peng, LUO Yun-jun, WANG Xiao-qing, et al. Properties of GAP-PET dual-soft segments energetic polyurethane elastomer[J]. Ciesc Journal, 2010, 61(3):784-788.
[13]吴艳光, 罗运军, 葛震, 等. GAP/PET/NC型粘合剂胶片的制备及其力学性能研究[J]. 固体火箭技术, 2013, 36(5):642-646.
WU Yan-guang,LUO Yun-jun,GE Zhen,et al. Study on preparation and mechaIlical properties of GAP/PET/NC binder films[J]. Joumal of Solid Rocket Technology, 2013, 36(5):642-646.
[14]RIBEIRO S P, SANTIAGO D G, VIANNA A D S. Glycidyl azide polymer(GAP). I. Syntheses and characterization[J]. Polimeros-Ciencia E Tecnologia, 2012, 22(5): 414-421.
[15]PISHARATH S, ANG H G. Synthesis and thermal decomposition of GAP-Poly(BAMO)copolymer[J]. Polymer Degradation and Stability, 2007, 92(7)1365-1377.
[16]TANVER A, REHMAN F, WAZIR A, et al. Energetic hybrid polymer network(EHPN)through facile sequential polyurethane curation based on the reactivity differences between glycidyl azide polymer and hydroxyl terminated polybutadiene[J]. RSC Advances, 2016, 6: 11032-11039.
[17]王建峰, 黄振亚, 侯果文. BAMO-GAP基ETPE的合成与性能研究[J]. 火炸药学报, 2016, 39(2):45-49.
WANG Jian-feng, HUANG Zhen-ya, HOU Guo-wen. Study on synthesis and properties of BAMO-GAP based ETPE[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2016, 39(2):45-49.
[18]MA M, KWON Y. Reactive cycloalkane plasticizers covalently linked to energetic polyurethane binders via facile control of an in situ Cu-free azide-alkyne 1,3-dipolar cycloaddition reaction[J]. Polymer Chemistry, 2018, 9(45): 5452-5461.
[19]罗善国, 陈福泰, 谭惠民, 等. 多种谱学方法研究环氧乙烷/四氢呋喃共聚醚的热氧降解[J]. 分析化学研究报告, 2001, 29(5):516-521.
LUO Shan-guo, CHEN Fu-tai, TAN Hui-min, et al. Spectrometric investigation on thermooxidative degradation of ethylene oxide and tetra-hydrofuran co-polyether[J]. Chinese Journal of Analytical Chemistry, 2001, 29(5):516-521.
[20]刘国涛, 范晓东, 程广文, 等. 环氧乙烷/四氢呋喃共聚醚的合成与表征[J]. 中国胶粘剂, 2008, 17(9):5-9.
LIU Guo-tao, FAN Xiao-dong, CHENG Guang-wen, et al. Synthesis and characterization of ethylene oxide/tetrahydrofuran copolyether[J]. China Adhesives, 2008, 17(9):5-9.
[21]倪冰, 覃光明, 冉秀伦. 化学共混改善GAP黏合剂力学性能研究进展[J]. 化学推进剂与高分子材料, 2010, 8(5):15-19.
NI Bing, QIN Guang-ming, RAN Xiu-lun. Research progress on chemical blend improving mechanical properties of GAP binder[J]. Chemical Propellants & Polymeric Materials, 2010, 8(5):15-19.
[22]JIN B, SHEN J, GOU X, et al. Synthesis, characterization, thermal stability and sensitivity properties of new energetic polymers-PVTNP-g-GAPs crosslinked polymers[J]. Polymers, 2016,8(1): 10-23.
[23]SELIM K, OZKAR S, YILMAZ L. Thermal characterization of glycidyl azide polymer(GAP)and GAP-based binders for composite propellants[J]. Journal of Applied Polymer Science, 2000, 77(3): 538-546.
[24]CELINA M, GRAHAM A C, GILLEN K T, et al. Thermal degradation studies of a polyurethane propellant binder[J]. Rubber Chemistry and Technology, 2000, 73(4): 678-693.
[25]WANG X F, JIN B, PENG R F, et al. Synthesis, spectroscopic characterization, thermal stability and compatibility properties of energetic PVB-g-GAP copolymers[J]. Journal of Polymer Research, 2015, 22:167-177.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}