含氟唑类含能化合物分子设计及性能预测

杨 雷1,谭 明2,刘玉存1,荆苏明1,廖龙渝3

火炸药学报 ›› 2020, Vol. 43 ›› Issue (2) : 188-194,220.

PDF(2474 KB)
  • 主管:中国科学技术协会

    主编:魏 卫

    ISSN 1007-7812

     
  • 主办:中国兵工学会与中国兵器工业第204研究所共同

    出版:《火炸药学报》 编辑部

    CN 61-1310/TJ

PDF(2474 KB)
火炸药学报 ›› 2020, Vol. 43 ›› Issue (2) : 188-194,220. DOI: 10.14077/j.issn.1007-7812.201907018

含氟唑类含能化合物分子设计及性能预测

  • 杨 雷1,谭 明2,刘玉存1,荆苏明1,廖龙渝3
作者信息 +

Molecular Design of Fluorine-Containing Azole Energetic Compounds and Its Application Performance Prediction

  • YANG Lei1,TAN Ming2,LIU Yu-cun1,JING Su-ming1, LIAO Long-yu3
Author information +
文章历史 +

摘要

以三唑和四唑为主体骨架结构设计了11种新型含氟唑类含能化合物,采用密度泛函理论,优化了化合物的几何结构,计算了化合物的密度、生成焓、爆速、爆压和撞击感度等相关性能参数。计算结果表明,含氟基团的引入使化合物具有较高的键离解能和较好的热稳定性,且对化合物的撞击感度影响较小; 除二氟氨基二硝基联三唑外所有化合物的密度均在1.90g/cm3以上,爆速均在8.32~11.13km/s之间,爆压均在31.97~56.31GPa之间; 所有化合物都具有较好的热稳定性,其键离解能均大于230kJ/mol; 化合物的撞击感度分布在17.51~38.85cm之间; 各基团对化合物密度贡献的大小顺序为:-OCF3>-CF3>-NF2>-F>-CF(NO2)2,基团对能量贡献的大小顺序为:-F(NO2)2>-OCF3>NF2; 根据理论计算结果优选出了两种性能较好的含能化合物1-三氟甲氧基-3,5-二硝基-1H-1,2,4-三唑和1-三氟甲基-3,5-二硝基-1,2,3,4-四唑,两种化合物的密度分别为2.03和2.10g/cm3,生成焓分别为-170.73和-146.24kJ/mol,爆速分别为9.32和9.23km/s,爆压分别为40.23和32.60GPa,二者能量水平高于DNMT; 撞击感度(H50)分别为33.10和38.85cm。

Abstract

Eleven new fluorine-containing azole energetic compounds were designed with high density energetic compounds as the research target and triazole and tetrazole as the main skeleton structures. The geometric structure of the compound was optimized by density functional theory. Then the density, enthalpy of formation, detonation velocity, detonation pressure, impact sensitivity and other relevant performance parameters were calculated. The calculation results show that the introduction of fluorine-containing groups renders the compound higher bond dissociation energy and better thermal stability,and has less effect on the impact sensitivity of the compound. The densities of the compounds were above 1.90g/cm3 except difluoroaminodinitrotriazole. The detonation velocities of the compounds were among 8.32 and 11.13km/s, and detonation pressures were from 31.97 to 56.31GPa. The thermal stability of the compounds were good, and their bond dissociation energies are more than 230kJ/mol. The impact sensitivity of the compounds ranges from 17.51 to 38.85cm. The order for the contribution of groups to the density of the compounds is -OCF3>-CF3>-NF2>-F>-CF(NO2)2, and the contribution of groups to energy is -F(NO2)2>-OCF3>NF2. According to the results of the theoretical calculation, two energetic compounds 1- trifluoromethoxy-3,5-dinitro-1h-1,2,4-triazole and 1- trifluoromethyl-3,5-dinitro-1,2,3,4-tetrazole with better performance are selected. The densities of the two compounds are 2.03g/cm3 and 2.10g/cm3, respectively. The enthalpy of formation are -170.73kJ/mol and -146.24kJ/mol, respectively. The detonation velocities are 9.32km/s and 9.23km/s, and the detonation pressure are 40.23 and 32.60GPa, respectively. The energy level is higher than DNMT.The impact sensitivity are 33.10 and 38.85cm,respectively.

关键词

量子化学 / 含氟唑类含能化合物 / 分子设计 / 性能预测 / 高密度 / 撞击感度

Key words

quantum chemistry / fluorinated azole energetic compounds / molecular design / performance prediction / high density / impact sensitivity

引用本文

导出引用
杨 雷1,谭 明2,刘玉存1,荆苏明1,廖龙渝3. 含氟唑类含能化合物分子设计及性能预测. 火炸药学报. 2020, 43(2): 188-194,220 https://doi.org/10.14077/j.issn.1007-7812.201907018
YANG Lei1,TAN Ming2,LIU Yu-cun1,JING Su-ming1, LIAO Long-yu3. Molecular Design of Fluorine-Containing Azole Energetic Compounds and Its Application Performance Prediction. Chinese Journal of Explosives & Propellants. 2020, 43(2): 188-194,220 https://doi.org/10.14077/j.issn.1007-7812.201907018
中图分类号: TJ55    O641   

参考文献

[1] 罗运军,李生华.新型含能材料[M].北京:国防工业出版社,2015.
[2]MARZI E, SPITALERI A, MONGIN F, et al. Fluoro or trifluoromethyl-substituted benzyl and phenethyl alcohols: substrates for metal-mediated site-selective functionalization[J]. European Journal of Organic Chemistry, 2002(15): 2508-2517.
[3]FEI T, DU Y, PANG S. Theoretical design and prediction of properties for dinitromethyl, fluorodinitromethyl, and(difluoroamino)dinitromethyl derivatives of triazole and tetrazole[J]. RSC Advances, 2018, 8(19): 10215-10227.
[4]WU Q, PAN Y, ZHU W, et al. Computational study of energetic nitrogen-rich derivatives of 1, 4-bis(1-azo-2, 4-dinitrobenzene)-iminotetrazole[J]. Journal of Molecular Modeling, 2013, 19(4): 1853-1864.
[5]杜黎小松,刘玉存,程桂敏,等.异呋咱类熔铸炸药载体分子设计与性能研究[J].兵工学报,2018,39(1):46-56.
DULI Xiao-song,LIU Yu-cun,CHENG Gui-min, et al. Molecular design and performance study of isofurazano carriers for melt-castable explosives[J].Acta Armamentarii,2018,39(1):46-56.
[6]GIDASPOV A A, BAKHAREV V V, SUPONITSKY K Y, et al. High-density insensitive energetic materials: 2, 4, 6-tris(2-fluoro-2, 2-dinitroethoxy)-1, 3, 5-triazine[J]. RSC Advances, 2016, 6(106): 104325-104329.
[7]FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 16[J]. Revision A, 2016:3.
[8]BECKE A D. Density-functional thermochemistry. V. Systematic optimization of exchange-correlation functionals[J]. The Journal of Chemical Physics, 1997, 107(20): 8554-8560.
[9]LU T, CHEN F. Multiwfn: a multifunctional wavefunction analyzer[J]. Journal of Computational Chemistry, 2012, 33(5): 580-592.
[10] 卢天,陈飞武.原子电荷计算方法的对比[J].物理化学学报,2012,28(1):1-18.
LU Tian,CHEN Fei-wu.Comparison of computational methods for atomic charges[J].Acta Physico-Chimica Sinica,2012,28(1):1-18.
[11]林梦海.量子化学计算方法与应用[M].北京:科学出版社,2004.
[12]RICE B M, BYRD E F C. Evaluation of electrostatic descriptors for predicting crystalline density[J]. Journal of Computational Chemistry, 2013, 34(25): 2146-2151.
[13]朱卫华,王桂香,肖鹤鸣,等.高能化合物的分子设计[M].北京:科学出版社,2014.
[14]BYRD E F C, RICE B M. Improved prediction of heats of formation of energetic materials using quantum mechanical calculations[J]. The Journal of Physical Chemistry A, 2006, 110(3): 1005-1013.
[15]KAMLET M J, JACOBS S J. Chemistry of detonations. I. A simple method for calculating detonation properties of C–H–N–O explosives[J]. The Journal of Chemical Physics, 1968, 48(1): 23-35.
[16]LI Y, WU J, CAO D, et al. Theoretical study on the effects of hydrogen-bonding and molecule-cation interactions on the sensitivity of HMX[J]. The Journal of Physical Chemistry A, 2016, 120(42): 8444-8449.
[17]POSPIS IL M, VAVRA P, CONCHA M C, et al. A possible crystal volume factor in the impact sensitivities of some energetic compounds[J]. Journal of Molecular Modeling, 2010, 16(5): 895-901.
[18]钟一鹏,胡雅达.国外炸药性能手册[M].北京:兵器工业出版社,1990.
PDF(2474 KB)

10

Accesses

0

Citation

Detail

段落导航
相关文章

/