混合坐标系下跟踪自由段弹道导弹的IMM-UPF算法研究

郭跃;刘新学;王才红

弹道学报 ›› 2015, Vol. 27 ›› Issue (1) : 12.

弹道学报 ›› 2015, Vol. 27 ›› Issue (1) : 12.

混合坐标系下跟踪自由段弹道导弹的IMM-UPF算法研究

  • 郭跃1, 刘新学1, 王才红2
作者信息 +

A Study on IMM-UPF of Tracking Ballistic Missile at Free-flightPhase in Mixed Coordinate System

  • GUO Yue1, LIU Xin-xue1, WANG Cai-hong2
Author information +
文章历史 +

摘要

为了提高对自由段弹道导弹的跟踪精度,在混合坐标系下构建了自由段弹道导弹不做机动时更为准确的系统动力学模型。为提高对自由段弹道导弹目标机动时的适应能力,结合Singer和当前统计模型给出了自由段弹道导弹机动时的系统动力学模型,利用交互多模型(IMM)实现了对导弹的跟踪。在对探测数据的处理过程中,为了避免探测数据中闪烁噪声的影响,提出了IMM-UPF算法,并分别与EKF、UKF、UPF等算法做了对比分析。仿真结果表明,IMM-UPF算法对存在机动的自由段弹道目标以及雷达闪烁噪声具有良好的适应性,较EKF、UKF、UPF能够获得较高的跟踪精度。

Abstract

To improve the accuracy of tracking ballistic missile at free-flight phase,the accurate model of non-maneuvering ballistic missile at free-flight phase was constructed in mixed coordinate system.To improve the adaptability to maneuvering ballistic target,the system dynamics model of ballistic missile maneuvering at free-flight phase was presented combined with Singer and current statistical model,and the interaction multi-models(IMM)was used to track the missile.To avoid the effect of the flicker noise in the tracking data,the IMM-UPF algorithm was proposed,and it was compared to EKF,UKF and UPF respectively.The simulation results show that the IMM-UPF has better adaptability to the maneuvering ballistic target and the flicker noise of target’s data,and it has high accurate tracking ability than EKF,UKF and UPF.

关键词

混合坐标系 / 弹道导弹 / 自由飞行弹道 / 交互多模型 / 不敏粒子滤波

Key words

mixed coordinates system / ballistic missile / free-flight trajectory / interacting multiple model / unscented particle filter

引用本文

导出引用
郭跃, 刘新学, 王才红. 混合坐标系下跟踪自由段弹道导弹的IMM-UPF算法研究. 弹道学报. 2015, 27(1): 12
GUO Yue, LIU Xin-xue, WANG Cai-hong. A Study on IMM-UPF of Tracking Ballistic Missile at Free-flightPhase in Mixed Coordinate System. Journal Of Ballistics. 2015, 27(1): 12

参考文献

[1] 张毅,杨辉耀,李俊莉.弹道导弹弹道学[M].长沙:国防科技大学出版社,1999:111-157.
ZHANG Yi,YANG Hui-yao,LI Jun-li.The ballistic trajectory[M].Changsha:National University of Defense Technology Press,1999:111-157.(in Chinese)
[2]LI X R,JILKOV V P.A survey of maneuvering target tracking,part Ⅱ:ballistic target models[J].SPIE,2001,4 473:1-23.
[3]秦永元,张洪钺,王叔华.卡尔曼滤波与组合导航原理[M].西安:西北工业大学出版社,2004:69-138.
QIN Yong-yuan,,ZHANG Hong-yue,WANG Shu-hua.Kalman filter and the principle of combined guidance[M].Xi’an:Northwestern Polytechnical University Press,2004:69-138.(in Chinese)
[4] JULIER S J,UHLMANN J K.Unscented filtering and nonlinear estimation[J].Proceedings of IEEE,2004:92(3):401-412.
[5]GREWAL M S,ANDREWS A P.Kalman filtering,theory and practice using MATLAB[M].New York:Wiley Interscience,2001:56-104.
[6]WU Y,HU D,WU M,et al.Unscented Kalman filtering for additive noise case:augmented versus non-augmented[J].IEEE Signal Processing Letters,2012:12(5):357-360.
[7]JOUNI H,SIMO S.Optimal filtering with Kalman filters and smoothers:a manual for Matlab toolbox EKF/UKF[M].Finland:Helsinki University of Technology,2007:20-34.
[8]EASTHOPE P F,HEYS N W.Multiple-model oriented target-tracking system[J].SPIE,1994,2 235:72-79.
[9]LAWTON J A,JESIONOWSKI R J,ZARCHAN P.Comparison of four filtering options for a radar tracking problem[J].AIAA Journal of Guidance,Control and Dynamics,1998,21(4):618-623.
[10]FARINA A,RISTIC B,BENVENUTI D.Tracking a ballistic target:comparison of several nonlinear filters[J].IEEE Transactions on Aerospace and Electronic Systems,2002,38(3):854-867.
[11]COSTA P J.Adaptive model architecture and extended Kalman-Bucy filters[J].IEEE Transactions on Aerospace and Electronic Systems,1994,30(2):525-533.
[12]DEMPSTER R J,BLACKMAN S S,NICHOLS T S.Combining IMM filtering and MHT data association for multitarget tracking[C]// Proceedings of the 29th Southeastern Symposium on System Theory.Cookeville:IEEE,1997:123-127.
[13]CHEN R,LIU J S.Mixture Kalman filters[J].Journal of the Royal Statistical Society,2000,52(3):493-508.
[14]周宏仁,敬忠良,王培德.机动目标跟踪[M].北京:国防工业出版社,1991:134-153.
ZHOU Hong-ren,JING Zhong-liang,WANG Pei-de.Mobile target tracking[M].Beijing:National Defense Industry Press,1991:134-153.(in Chinese)
[15]朱志宇.粒子滤波算法及其应用[M].北京:科学出版社,2010:32-144.
ZHU Zhi-yu.The application of particle filter algorithm[M].Beijing:Science Press,2010:32-144.(in Chinese)
[16]MARCELO G S B,ANTON P.Improved particle filters for ballistic target tracking[J].IEEE ICASSP,2004,2:705-708.

文章所在专题

弹道学

6

Accesses

0

Citation

Detail

段落导航
相关文章

/