为探讨步枪系统发射过程中的准确物理参数,以牛顿第二定律和内弹道学计算公式为理论基础,建立其动力学数学模型.利用该模型计算了内弹道时期和后效期全枪系统的后坐力、后坐位移、后坐速度、角速度和角位移,以及枪机组件的运动位移和速度.计算结果表明,最大后坐速度和最大后坐力均发生在枪弹飞离枪口时,最大后坐位移发生在火药气体作用的后效期.该方法为步枪系统发射动力学的理论研究及其数学建模探索了一条新路径,对同类系统发射动力学特性的进一步分析探讨具有参考价值.
Abstract
In order to gain the accurate physical parameters of rifle system during shooting process, dynamic mathematic model of rifle system was established based on Newton second laws and the internal ballistic formula. The model was employed to calculate the recoil forces, displacements, velocity, angular velocity and angular displacements of the whole rifle system as well as displacements and velocity of bolt carrier. The calculating results indicate that both the maximal recoil velocity and the maximal recoil force emerge while bullet flying off gun muzzle, and the maximal recoil displacement takes place at the action aftereffect period of explosive gas. The method offers a new means for theoretical study of shooting dynamics of rifle system and its mathematic modelling, and it is worth reference while carrying the further analysis of shooting dynamic characteristics of systems of the same kind.
关键词
自动武器 /
步枪系统 /
动力学建模 /
内弹道
{{custom_keyword}} /
Key words
automatic weapon /
rifle system /
dynamic modelling /
internal ballistics
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]甘高才. 自动武器动力学[M]. 北京,兵器工业出版社,1990:30-75.
[2]姚养无. 火炮与自动武器动力学[M]. 北京:兵器工业出版社,2000:9-48.
[3]姚建军,徐诚,王永娟. 考虑非线性的机枪系统发射动力学研究[J]. 弹道学报,2001,13(9):8-13.
[4]胡志刚,徐诚,王亚平. 计及自动机碰撞的机枪发射系统动力学仿真研究[J]. 弹道学报,2004,16(6):46-50.
[5]刘瑛,潘宏侠. 机枪系统的建模与动力学仿真[J]. 华北工学院学报,2004,25(3):181-186.
[6]FEDARAVICˇ A, RAGULSKIS M, SLIYS E. Dynamic synthesis of the recoil imitation system of weapons [J]. Mechanika, 2005, 51: 44-48.
[7]张志涌. 精通MATLAB 6.5版[M].北京: 北京航空航天大学出版社,2003:176-194.
[8]徐诚,王亚平. 火炮与自动武器动力学[M]. 北京:北京理工大学出版社,2006:77-81.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}