为研究真实情形下斜劈诱导的斜爆轰波的驻定窗口及影响因素,利用考虑平衡气体效应的极曲线关系式,分析了氢气-空气混合物的斜爆轰波的驻定窗口。与已有的一步反应的驻定窗口对比,讨论了平衡气体效应带来的特性; 调整来流混合物的马赫数、压力、温度和当量比,分析了不同参数对驻定窗口的影响。研究结果表明,在氢气-空气混合物中采用9种平衡气体组分时,随着来流马赫数和温度的增加、混合物当量比的减少,形成的驻定窗口明显增加,斜爆轰波更容易驻定; 初压对斜爆轰波的驻定影响较小。
Abstract
To study the standing window and influence factors of wedge-induced oblique detonation wave in real working condition,the polar curve considering equilibrium gas effect was used to analyse the standing window of the oblique detonation wave of the hydrogen-air mixture,which was compared with the standing window of the hydrogen-air mixture for one step reaction. The influence of several incoming flow parameters,such as Mach number,pressure,temperature and equivalent ratio,on the standing window was analysed. The result shows that the equilibrium compositions for hydrogen-air mixture include 9 species. With the increase of Mach number and temperature and the decrease of equivalent ratio,the standing window of oblique detonation wave considering equilibrium gas effect increases obviously,and the oblique detonation wave is easier to stand. The influence of dynamic pressure on the standing of detonation wave is little.
关键词
斜爆轰波 /
平衡气体效应 /
斜爆轰 /
驻定窗口
{{custom_keyword}} /
Key words
oblique detonation wave /
equilibrium gas effect /
oblique detonation /
standing window
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 王振国,梁剑寒,丁猛,等. 高超声速飞行器动力系统研究进展[J]. 力学进展,2009,39(6):716-739.
WANG Zhenguo,LIANG Jianhan,DING Meng,et al. A review on hypersonic airbreathing propulsion system[J]. Advances in Mechanics,2009,39(6):716-739.(in Chinese)
[2]范宝春. 用于推进的三种爆轰波的结构特征[J]. 力学进展,2012,42(2):162-169.
FAN Baochun. Fundamental characteristics of three types of detonation waves utilized in propulsion[J]. Advances in Mechanics,2012,42(2):162-169.(in Chinese)
[3]WOLAAN’SKI P. Detonative Propulsion[J]. Proceedings of the Combustion Institute,2013,34(1):125-158.
[4]LEHR H F. Experiments in shock-induced combustion[J]. Acta Astronaut,1972,17:589-597.
[5]DABORA E K. Oblique detonation at hypersonic velocities[J]. Progress in Astronautics and Aeronautics,1991,133:187-201.
[6]VIGUIER C,SILVA L F F D,DESBORDES D,et al. Onset of oblique detonation waves:comparison between experimental and numerical results for hydrogen-air mixture[J]. Proceedings of the Combustion Institute,1996,26:3023-3031.
[7]MORRIS C I,KAMEL M R,HANSON R K. Shock-induced combustion in high-speed wedge flows[J]. Proceedings of the Combustion Institute 1998,27:2157-2164.
[8]崔东明. 驻定斜爆轰波流场的数值模拟与显示[J]. 弹道学报,1999,11(3):62-66.
CUI Dongming. Numerical simulation and visualization of oblique detonation stabilized on a projectile[J]. Journal of Ballistics,1999,11(3):62-66.(in Chinese)
[9]SILVA L F F D,DESHAIES B. Stabilization of an oblique detonation wave by a wedge:a parametric numerical study[J]. Combustion and Flame,2000,121(1-2):152-166.
[10]GUI M Y,FAN B C. Wavelet structure of wedge-induced oblique detonation waves[J]. Combustion Science and Technology,2012,184:1456-1470.
[11]TENG H H,JIANG Z L. On the transition pattern of the oblique detonation structure[J]. Journal of Fluid Mechanics,2012,713:659-669.
[12]LIU Y. Analytical and numerical investigations of wedge-induced oblique detonation waves at low inflow Mach number[J]. Combustion Science and Technology 2014,187(6):843-856.
[13]TENG H,NG H D,JIANG Z. Initiation characteristics of wedge-induced oblique detonation waves in a stoichiometric hydrogen-air mixture[J]. Proceedings of the Combustion Institute,2017,36(2):2735-2742.
[14]ZHANG Y,YANG P,TENG H,et al. Transition between different initiation structures of wedge-induced oblique detonations[J]. AIAA Journal,2018,56(10):4016-4023.
[15]归明月,范宝春. 尖劈诱导斜爆轰的胞格结构的数值研究[J]. 弹道学报,2012,24(2):83-87.
GUI Mingyue,FAN Baochun. Fine structure and its influence factor of wedge-induced oblique detonation waves[J]. Journal of Ballistics,2012,24(2):83-87.(in Chinese)
[16]YANG P,NG H D,TENG H H. Numerical study of wedge-induced oblique detonations in unsteady flow[J]. Journal of Fluid Mechanics,2019,876:264-287.
[17]PRATT D T. Morphology of standing oblique detonation waves[J]. Journal of Propulsion and Power,1991,7(5):837-845.
[18]ASHFORD S A,EMANUEL G. Wave angle for oblique detonation[J]. Shock Waves,1994,3:327-329.
[19]袁生学. 高超声速发动机不同燃烧模式的性能比较—斜爆轰发动机性能评价[J]. 空气动力学学报,1995(1):48-56.
YUAN Shengxue. Comparison of hypesronic airbreathing engine performance among different combustion modes-evaluation of CJ oblique detonation wave engines[J]. Acta Aerodynamica Sinica,1995(1):48-56.(in Chinese)
[20]EMANUEL G,TUCKNESS G D. Steady,oblique,detonation waves[J]. Shock Waves,2004,13:445-451
[21]伍智超,郭印诚. 氢-空气斜爆轰波的极曲线分析[J]. 工程热物理学报,2012,33(9):1631-1634.
WU Zhichao,GUO Yincheng. Analysis of morphology of oblique detonation wave in H2-air mixture[J]. Journal of Engineering Thermophysics,2012,33(9):1631-1634.(in Chinese)
[22]范宝春. 极度燃烧[M]. 北京:国防工业出版社,2018.
FAN Baochun. Extreme combustion[M]. Beijing:National Defense Industry Press,2018.(in Chinese)
[23]GAMEZO N V,OGAWA T,ORAN S E. Flame acceleration and DDT in channel with obstacles:effects of obstacle spacing[J]. Combustion and Flame,2008,155:302-315.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}