连续吹喷-抽吸控制方法对圆柱尾流的影响

任刘珍;李霖;张梦卓;冯家兴;胡海豹

兵工学报 ›› 2021, Vol. 42 ›› Issue (5) : 1016-1022.

兵工学报 ›› 2021, Vol. 42 ›› Issue (5) : 1016-1022. DOI: 10.3969/j.issn.1000-1093.2021.05.014
论文

连续吹喷-抽吸控制方法对圆柱尾流的影响

  • 任刘珍, 李霖, 张梦卓, 冯家兴, 胡海豹
作者信息 +

Control of Wake Flow of a Circular Cylinder by Continuous Blow and Suction

  • REN Liuzhen, LI Lin, ZHANG Mengzhuo, FENG Jiaxing, HU Haibao
Author information +
文章历史 +

摘要

钝体后方的流动分离会诱发阻力大幅增加、升力上下波动等严重后果,有效控制钝体的流动分离对提升其力学性能至关重要。采用美国TSI公司出厂IFA300恒温热线风速仪,在小型低速风洞中较系统地研究了连续吹喷-抽吸控制方法对圆柱尾流的影响规律。测试结果表明:前缘连续抽吸与后缘连续吹喷联合的方法可大幅削弱圆柱的流动分离,减小尾流区范围,显著抑制尾流区的湍流度;而且在测试范围内,前缘连续抽吸和后缘连续吹喷的速度及角度增加均可提高流动控制效果,例如,在抽吸-吹喷角度分别为50°和70°、抽吸-吹喷速度为3倍来流速度时,圆柱尾部低速区基本消失,湍流度大幅降低,甚至不足未施加控制时湍流度的5%。通过对比单独前缘连续抽吸、单独后缘连续吹喷的控制效果发现,连续吹喷-抽吸控制方法中,后缘吹喷的贡献大于前缘抽吸,是实现圆柱尾部流场高效控制的关键。

Abstract

The flow separation behind a bluff body causes adverse effects such as increased resistance and fluctuation of lift force. Therefore, it is of great importance to control the flow separation on the bluff bodies so as to improve their mechanical properties. An active control method, which combines continuous blow and suction, is employed to circular cylinders,and the wake characteristics of cylinders are researched systematically using an IFA300 constant-temperature anemometer in a small low speed wind tunnel. Test results show that the combination of front suction and rear blow can significantly weaken the flow separation of cylinders, reduce the range of wake region, and greatly suppress the turbulence of this region.The increase in blow-suction velocity and angle can both promote the effectiveness of flow control in the test range, especially for cases with angle of 50° or 70° and a velocity which is three times the inflow velocity. In this instance, the low velocity zone behind the cylinder is almost disappeared, and the turbulence decreases greatly, which is even less than 5% of turbulence when the cylinder is not controlled.By comparing the control effects of a circular cylinder with single front continuous suction or single rear continuous blow, it is found that the contribution of rear blow is much greater than that of the front suction in the continuous blow-suction control method, which indicates that the former plays a key role to efficiently control the cylinder wake flow.

关键词

圆柱 / 尾流 / 流动分离 / 主动控制 / 连续吹喷-抽吸控制

Key words

circularcylinder / wakeflow / flowseparation / activecontrol / continuousblow-suctioncontrol

引用本文

导出引用
任刘珍, 李霖, 张梦卓, 冯家兴, 胡海豹. 连续吹喷-抽吸控制方法对圆柱尾流的影响. 兵工学报. 2021, 42(5): 1016-1022 https://doi.org/10.3969/j.issn.1000-1093.2021.05.014
REN Liuzhen, LI Lin, ZHANG Mengzhuo, FENG Jiaxing, HU Haibao. Control of Wake Flow of a Circular Cylinder by Continuous Blow and Suction. Acta Armamentarii. 2021, 42(5): 1016-1022 https://doi.org/10.3969/j.issn.1000-1093.2021.05.014

基金

国家自然科学基金项目(52071272、51679203); 陕西省自然科学基础研究计划项目(2020JC-18); 中央高校基本科研业务费 专项项目(3102020HHZY030014); 工业和信息化部基础前沿项目(2018年)

参考文献


[1]CHOIH, JEON W P, KIM J. Control of flow over a bluff body[J]. Annual Review of Fluid Mechanics, 2008, 40: 113-139.
[2]宋桂霞. 水陆两栖车辆减阻增速关键问题研究[D]. 南京:南京航空航天大学, 2008.
SONG G X. Research on main questions of resistance reduction and speed increase for amphibious vehicle[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2008. (in Chinese)
[3]张辉. 以减阻增升减振为目标的尾流的电磁优化控制[D]. 南京: 南京理工大学, 2011.
ZHANG H. Optimal electromagnetic control of wakes via drag reduction, lift amplification and oscillatory suppression[D]. Nanjing: Nanjing University of Science and Technology, 2011. (in Chinese)
[4]WUY H, TANG Z Q, YANG S Q, et al. Proper-orthogonal-decomposition study of turbulent near wake of S805 airfoil in deep stall[J]. AIAA Journal, 2017, 55(6):1959-1969.
[5]于哲峰, 陈旭明, 杨鹰,等. 高超声速飞行器尾迹转捩及其对雷达散射截面的影响[J]. 兵工学报, 2019, 40(12): 2467-2472.
YU Z F, CHEN X M, YANG Y, et al. Wake transition of the hypersonic vehicle and its influence on RCS[J]. Acta Armamentarii, 2019, 40(12): 2467-2472. (in Chinese)
[6]LAWY Z , JAIMAN R K. Passive control of vortex-induced vibration by spanwise grooves[J]. Journal of Fluids and Structures, 2018, 83:1-26.
[7]MISHRAA, HANZLA M, DE A. Passive control of the onset of vortex shedding in flow past a circular cylinder using slit[J]. Physics of Fluids, 2020, 32(1): 10.1063/1.5132799.
[8]JIANG D W, ZHANG H, FAN B C, et al. Vortex structures and drag reduction in turbulent channel flow with the effect of space-dependent electromagnetic force[J]. Ocean Engineering, 2019, 176:74-83.
[9]秦勇, 宋彦萍, 陈浮,等. 合成射流控制高速扩压叶栅二次流的数值模拟[J]. 航空动力学报, 2018, 33(4): 792-802.
QIN Y, SONG Y P, CHEN F, et al. Numerical study of secondary flow control on high-speed compressor cascade with synthetic jets[J]. Journal of Aerospace Power, 2018, 33(4): 792-802. (in Chinese)
[10]SOHANKARA, KHODADADI M, RANGRAZ E. Control of fluid flow and heat transfer around a square cylinder by uniform suction and blowing at low Reynolds numbers[J]. Computers & Fluids, 2015, 109: 155-167.
[11]FENGL H, CUI G P, LIU L Y. Two-dimensionalization of a three-dimensional bluff body wake[J]. Physics of Fluids, 2019, 31(1): 017104.
[12]YANGW H, CHEN W L, LI H. Suppression of vortex-induced vibration of single-box girder with various angles of attack by self-issuing jet method[J]. Journal of Fluids and Structures, 2020, 96: 103017.
[13]ZHANGW, JIANG Y Q, LI L, et al. Effects of wall suction/blowing on two-dimensional flow past a confined square cylinder[J]. SpringerPlus, 2016, 5(1):985.
[14]FATAHIANE, NICHKOOHI A L, SALARIAN H, et al. Effects of the hinge position and suction on flow separation and aerodynamic performance of the NACA 0012 airfoil[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42: 86.
[15]FENGL H, CHOI K S, WANG J J. Flow control over an airfoil using virtual Gurney flaps[J]. Journal of Fluid Mechanics, 2015, 767: 595-626.
[16]KIMJ, PARK Y M, LEE J, et al. Numerical investigation of jet angle effect on airfoil stall control[J]. Applied Sciences, 2019, 9(15): 2960.
[17]KANKATALAP, BANGGA G. Active separation control on thick wind turbine airfoils by means of steady and unsteady blowing[J]. Advanced Theory and Simulations, 2019, 2(7): 1900077.
[18]GUY Q, ZHAO G, ZHENG J X, et al. Experimental and numerical investigation on drag reduction of non-smooth bionic jet surface[J]. Ocean Engineering, 2014, 81: 50-57.
[19]TADJFARM, KAMARI D. Optimization of flow control para- metersover SD7003 airfoil with synthetic jet actuator[J]. Journal of Fluids Engineering-Transactions of the ASME, 2020, 142(2): 021206.
[20]MAL Q, FENG L H. Vortex formation and evolution for flow over a circular cylinder excited by symmetric synthetic jets[J]. Experimental Thermal and Fluid Science, 2019, 104: 89-104.
[21]FENGL H, WANG J J. Modification of a circular cylinder wake with synthetic jet: vortex shedding modes and mechanism[J]. European Journal of Mechanics-B/Fluids, 2014, 43:14-32.
[22]WANGC L, TANG H, DUAN F, et al. Control of wakes and vortex-induced vibrations of a single circular cylinder using synthetic jets[J]. Journal of Fluids and Structures, 2016, 60: 160-179.
[23]WANGC L, TANG H, YU S C M, et al. Active control of vortex-induced vibrations of a circular cylinder using windward-suction-leeward-blowing actuation[J]. Physics of Fluids, 2016, 28(5):053601.
[24]PANTOKRATORASA. Laminar flow across an unbounded square cylinder with suction or injection[J]. Zeitschrift für Angewandte Mathematik und Physik, 2017, 68(1):1.
[25]SOHANKARA, NAJAFI M. Control of vortex shedding, forces and heat transfer from a square cylinder at incidence by suction and blowing[J]. International Journal of Thermal Sciences, 2018, 129: 266-279.


201

Accesses

0

Citation

Detail

段落导航
相关文章

/