基于双向概念格的坦克驾驶模拟训练关联规则挖掘

邓青;薛青;高恒;翟凯

兵工学报 ›› 2020, Vol. 41 ›› Issue (12) : 2397-2407.

兵工学报 ›› 2020, Vol. 41 ›› Issue (12) : 2397-2407. DOI: 10.3969/j.issn.1000-1093.2020.12.004
论文

基于双向概念格的坦克驾驶模拟训练关联规则挖掘

  • 邓青, 薛青, 高恒, 翟凯
作者信息 +

Mining Association Rules of Tank Driving Simulation Training Based on Bidirectional Concept Lattice

  • DENG Qing, XUE Qing, GAO Heng, ZHAI Kai
Author information +
文章历史 +

摘要

利用坦克驾驶模拟器进行模拟训练是提高装备操作技能的重要方法。针对以往模拟训练采用统计分析方法难以从复杂训练数据中发现知识和规律的不足,提出基于双向概念格的关联规则挖掘方法,对坦克驾驶模拟训练结果进行分析。采用矩阵布尔化操作将原始数据表转化为单值形式背景,完成对坦克驾驶模拟训练多值数据处理;定义内涵秩和外延秩,实现从概念格的顶层、底端双向搜索概念节点,同时结合支持度阈值约简冗余节点;设计规则后件固定作为约束条件,过滤不相关的频繁项集,提取满足用户挖掘目标的关联规则。实验结果表明,基于双向概念格的关联规则挖掘方法在运行时间和生成频繁项集上有明显优势,将其应用于某型坦克驾驶模拟器的训练结果分析中,提取了有价值的约简关联规则,进一步验证了该方法的可行性与有效性。

Abstract

Training by tank driving simulator is an important way of improving the operating skill of equipment. The statistical analysis method is difficultly used to find the knowledge and rules from the complex training data in simulation training. A mining method of association rules based on bidirectional concept lattice is proposed to analyze the simulation training results of tank driving. The original data table is transformed into single value formal background by using Boolean matrix operation to complete the multiple value data processing of tank driving simulation training. Connotative rank and denotative rank are defined to search the concept nodes from the top and bottom of concept lattice, and the redundant nodes are reduced by combining the support thresholds. Post rule is designed as constraint condition to filter the irrelevant frequent item set, and extract the association rules that meet the mining target of users. The experimental results show that the association rules mining method based on bidirectional concept lattice has obvious advantages in run time and generating frequent item set. It is applied to analyze the training results of a tank driving simulator to extract the valuable reduction association rules, which further verifies the feasibility and effectiveness of the method.

关键词

坦克 / 驾驶模拟器 / 双向概念格 / 关联规则 / 模拟训练

Key words

tank / drivingsimulator / bidirectionalconceptlattice / associationrule / simulationtraining

引用本文

导出引用
邓青, 薛青, 高恒, 翟凯. 基于双向概念格的坦克驾驶模拟训练关联规则挖掘. 兵工学报. 2020, 41(12): 2397-2407 https://doi.org/10.3969/j.issn.1000-1093.2020.12.004
DENG Qing, XUE Qing, GAO Heng, ZHAI Kai. Mining Association Rules of Tank Driving Simulation Training Based on Bidirectional Concept Lattice. Acta Armamentarii. 2020, 41(12): 2397-2407 https://doi.org/10.3969/j.issn.1000-1093.2020.12.004

基金

武器装备预先研究项目(41404060205)

参考文献


[1]伊恩·斯特罗恩.世界军用模拟训练系统发展动向[J]. 杜飞, 王升才, 译.国外坦克,2014(4):34-37.
STRACHANI.Development trend of world military simulation training system[J]. DU F, WANG S C, translated. Foreign Tanks, 2014 (4): 34-37. (in Chinese)
[2]焦楷哲,程培源,刘滔,等. 国外军用虚拟训练系统研究[J]. 飞航导弹, 2013(6):64-67.
JIAO K Z, CHENG P Y, LIU T, et al. Research on foreign military virtual training system[J]. Aerodynamic Missile, 2013(6):64-67. (in Chinese)
[3]胡剑文,常青,冯晓文,等.作战仿真实验:理论、平台与应用[M].北京:国防工业出版社, 2016.
HU J W, CHANG Q, FENG X W, et al. Combat simulation experiment: theory, platform and application[M]. Beijing: National Defense Industry Press, 2016.(in Chinese)
[4]陈革, 孙永富. 一种基于分布式仿真的两栖装甲车辆驾驶训练模拟器设计[J]. 装甲兵工程学院学报, 2016, 30(2):67-72.
CHEN G, SUN Y F. Design of driving training simulator of amphibious armored vehicle based on distributed simulation method[J]. Journal of Academy of Armored Force Engineering, 2016, 30 (2): 67-72. (in Chinese)
[5]唐志武, 薛青. 基于决策树的装甲兵登陆突击仿真试验数据挖掘[J]. 装甲兵工程学院学报,2013, 22(1):6-9.
TANG Z W, XUE Q. Data mining in the simulation test of armored forces’s landing attack based on decision tree[J]. Journal of Academy of Armored Force Engineering, 2013, 22 (1): 6-9. (in Chinese)
[6]WILHELM G L.Analyzing and sharing data for surface combat weapons systems[D]. Monterey, CA, US: Naval Postgraduate School, 2014.
[7]DWIGHT J. An automated system for the analysis of combat training
center information: strategy and development[R]. Alexandria,VA, US: U.S. Army Research Institute for the Behavioral and Social Sciences, 2015.
[8]ANDREW C. Using the National Training Center instrumentation system to aid simulation-based acquisition[D]. Santa Monica, CA, US: Pardee Rand Graduate School, 2017.
[9]王泽璞, 王建国, 石又新, 等. 火控系统嵌入式训练数据分析方法[J]. 火力与指挥控制, 2018, 43(5):153-161.
WANG Z P, WANG J G, SHI Y X,et al. Research on data analysis method in embedded training for fire control system [J]. Fire Control and Command Control, 2018, 43 (5): 153-161. (in Chinese)
[10]邓桂龙, 刘智慧, 贾志东. 作战仿真实验数据关联规则挖掘研究[J]. 军事运筹与系统工程, 2008, 22(4): 46-50.
DENG G L, LIU Z H, JIA Z D. Research on data mining for association rules of operational simulation [J]. Military Operations Research and Systems Engineering, 2008, 22 (4): 46-50. (in Chinese)
[11]马建军. 关联规则在炮兵专业技术训练中的应用[J]. 科技信息, 2009(7):530,465.
MA J J. Application of association rules in artillery technical training [J]. Science & Technology Information, 2009(7): 530,465. (in Chinese)
[12]MOHAMMADA,HASHEM S,REZA M. Monte Carlo analytic hierarchy process(MAHP)approach to selection of optimum mining method[J]. International Journal of Mining Science and Technology, 2013, 23(4): 573-578.
[13]邬书良,杨珊,黄温钢 . 基于概念格粗糙集的采矿方法优选研究[J]. 黄金科学技术, 2019, 27(2): 181-188.
WU S L, YANG S, HUANG W G. Research on mining method optimization based on concept lattice rough set[J]. Gold Science and Technology, 2019, 27(2): 181-188. (in Chinese)
[14]BORDATJ P. Practical calculation of the galois lattice of a corres- pondence [J]. Mathematiques et Sciences Humaines, 1996, 96(1):31-47.
[15]邓青, 薛青, 罗佳. 基于支持向量机的坦克驾驶模拟训练结果分析[J]. 兵工学报, 2019, 40(9): 1953-1960.
DENG Q, XUE Q, LUO J. Analysis of tank driving simulation training results based on support vector machine[J]. Acta Armamentarii, 2019, 40(9): 1953-1960. (in Chinese)
[16]DIAS S M, LUISE Z, VIEIRA N. Using iceberg concept lattices and implications rules to extract knowledge from Ann[J]. IntelligentAutomationand Soft Computing, 2013, 19(3): 361-372.
[17]CANO A, NGUYEN D T, VENTURA S. UR-CAIM: improved CAIM discretization for unbalanced and balanced data[J]. Soft Computing, 2016, 20(8): 173-188.
[18]毛华, 窦林立. 基于矩阵列秩属性优先的概念格算法[J]. 河北大学学报(自然科学版), 2009, 29(2): 129-132.
MAO H, DOU L L. Concept lattice algorithm based on rank priority of matrix column[J]. Journal of Hebei University (Natural Science Edition), 2009, 29 (2): 129-132. (in Chinese)
[19]毛华, 杨蕾, 窦林立. 利用矩阵行秩生成概念格的一种算法[J]. 大学数学, 2010, 26(1): 115-117.
MAO H, YANG L, DOU L L. An algorithm for generating concept lattice by matrix row rank[J]. University Mathematics, 2010, 26(1): 115-117. (in Chinese)
[20]程恺. 概念格的建格方法[D]. 成都:西南交通大学, 2012.
CHENG K. The construction method of concept lattice [D]. Chengdu: Southwest Jiaotong University, 2012. (in Chinese)

文章所在专题

特种车辆理论与技术

241

Accesses

0

Citation

Detail

段落导航
相关文章

/