基于模糊控制策略的快速反射镜伺服控制

高歆杨;柯芳;邹伟;余潇;袁佳

兵工学报 ›› 2020, Vol. 41 ›› Issue (8) : 1529-1538.

兵工学报 ›› 2020, Vol. 41 ›› Issue (8) : 1529-1538. DOI: 10.3969/j.issn.1000-1093.2020.08.007
论文

基于模糊控制策略的快速反射镜伺服控制

  • 高歆杨, 柯芳, 邹伟, 余潇, 袁佳
作者信息 +

Servo Control of Fast Steering Mirror Based on Fuzzy Control Strategy

  • GAO Xinyang, KE Fang, ZOU Wei, YU Xiao, YUAN Jia
Author information +
文章历史 +

摘要

伺服性能是保证精确跟踪的前提条件,为了探索出提高快速反射镜伺服性能的控制方法,提出一种将模糊控制策略与PID结构相结合的模糊控制器用于快速反射镜伺服回路。该模糊控制器既继承了PID便于工程实现的优点,又拥有可自适应整定控制参数的特点,从而可提高现有快速反射镜的伺服性能,更好地适应各类运行工况。以基于高频摇摆电机的快速反射镜为应用对象设计了模糊控制器,进行仿真实验,并与基于传统PID控制的现有方案进行了对比。对实际工况下快速反射镜伺服性能的仿真实验结果表明:基于模糊控制策略的快速反射镜将抑制带宽从50 Hz提高到120 Hz、随机输入信号下稳态误差均方根从12.996″压缩到1.620″,验证了所提出的模糊控制器对提升快速反射镜伺服性能的可行性及有效性;基于模糊控制的快速反射镜可作为高精度复合轴系统中的子轴部分,应用于战术激光武器等要求跟瞄精度达到微弧度量级的光束定向场合。

Abstract

The servo control performance is the precondition to ensure precise tracking. A control method is studied to improve the servo performance of fast steering mirror(FSM). A fuzzy controller combining fuzzy control strategy with PID structure is proposed for the servo loop of fast steering mirror. The controller not only has the advantages of PID which is easy to implement in engineering, but also possesses the characteristics of self-adaption adjustment of control parameters. It's better adapted to various operating conditions.A fuzzy controller is designed based on the fast steering mirror of a high frequency swing motor for simulation experiment, and is compared with the existing scheme based on the traditional PID control. The servo performance of the fast steering mirror was simulated under the actual working condition. The simulated results show that the fast steering mirror based on the fuzzy control strategy increases the suppression bandwidth from 50 Hz to 120 Hz, and compresses the steady-state root mean square error in case of random input signal from 12.996″ to 1.620″, thus the feasibility and effectiveness of using the fuzzy control strategy to improve the servo control performance of FSM are verified; the FSM based on fuzzy control can be used as the subsystem part of the high-precision compound axis servomechanism in tactical laser weapons and other beam orientingoccasions requiring microradian tracking accuracy.

关键词

快速控制反射镜 / 模糊控制 / 伺服性能 / 抑制带宽

Key words

faststeeringmirror / fuzzycontrol / servoperformance / suppressionbandwidth

引用本文

导出引用
高歆杨, 柯芳, 邹伟, 余潇, 袁佳. 基于模糊控制策略的快速反射镜伺服控制. 兵工学报. 2020, 41(8): 1529-1538 https://doi.org/10.3969/j.issn.1000-1093.2020.08.007
GAO Xinyang, KE Fang, ZOU Wei, YU Xiao, YUAN Jia. Servo Control of Fast Steering Mirror Based on Fuzzy Control Strategy. Acta Armamentarii. 2020, 41(8): 1529-1538 https://doi.org/10.3969/j.issn.1000-1093.2020.08.007

参考文献


[1]KLUKD J, BOULET M T, TRUMPER D L. A high-bandwidth, high-precision, two-axis steering mirror with moving iron actuator [J]. Mechatronics, 2010, 22(3):257-270.
[2]CHO M, CORREDOR A C, DRIBUSCH C, et al. Design and development of a fast steering secondary mirror for the giant Magellan telescope[J]. Proceedings of SPIE, 2012, 8125:1-14.
[3]王震, 程雪岷. 快速反射镜研究现状及未来发展[J]. 应用光学, 2019,40(3):373-379.
WANG Z, CHEN X M. Research progress and development trend of fast steering mirror[J]. Journal of Applied Optics, 2019,40(3):373-379.(in Chinese)
[4]CHO M, JUN Y R J, DRIBUSCH C, et al. Design of the fast steering secondary mirror assembly for the giant Magellan telescope[J]. Proceedings of SPIE, 2018,10706: 1070607.
[5]XU X X, ZHANG G M, CHEN C B. Design and performance test of the fast-steering mirror with flexure hinge used in vehicle track-launch system[J]. Optoelectronics Letters, 2019,15(3):179-184.
[6]李文军. 复合轴光电跟踪系统控制策略的研究[D]. 长春:中国科学院长春光学精密机械与物理研究所, 2006.
LI W J. Study on control strategy of O-E tracking systems with compound axis[D]. Changchun :Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2006. (in Chinese)
[7]刘廷霞. 光电跟踪系统复合轴伺服控制技术的研究[D].长春:中国科学院长春光学精密机械与物理研究所,2005.
LIU T X. The research on compound-axis servo control technique of O-E tracking system[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics,Chinese Academy of Sciences,2005. (in Chinese)
[8]马佳光, 唐涛. 复合轴精密跟踪技术的应用与发展[J]. 红外与激光工程, 2013,42(1):218-227.
MA J G, TANG T. Review of compound axis servomechanism tracking control technology[J]. Infrared and Laser Engineering, 2013, 42(1):218-227.(in Chinese)
[9]田智炜. 快速反射镜结构分析与控制系统设计研究[D].长春:中国科学院长春光学精密机械与物理研究所, 2018.
TIAN Z W. Structural analysis and controller design of fast steering mirror[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2018.(in Chinese)
[10]艾志伟, 谭毅, 吴琼雁,等. 改进根轨迹的快速反射镜控制参量设计[J]. 激光技术, 2017,41(4):558-561.
AI Z W, TAN Y, WU Q Y, et al. Design of control parameters for fast steering mirrors by improving root locus[J]. Laser Technology, 2017, 41(4):558-561.(in Chinese)
[11]曹洪瑞, 刘永凯, 张淑梅. 基于快速反射镜的自适应控制算法研究[J]. 传感器与微系统, 2017,36(1):16-19.
CAO H R, LIU Y K, ZHANG S M. Adaptive control algorithm research based on fast steering mirror[J]. Transducer and Microsystem Technologies, 2017, 36(1):16-19.(in Chinese)
[12]魏文军, 赵雪童. 基于改进自抗扰的快速反射镜控制研究[J]. 红外技术, 2018,40(11):1071-1076.
WEI W J, ZHAO X T. Fast steering mirror control based on improved active disturbance rejection[J]. Infrared Technology, 2018, 40(11):1071-1076.(in Chinese)
[13]石坤. 基于Matlab/Simulink的模糊主动控制仿真[J]. 电子测试, 2018(23):5-7,38.
SHI K. Simulation experiment on fuzzy controller based on Matlab/Simulink[J]. Electronic Test, 2018(23): 5-7,38.(in Chinese)
[14]时培成, 徐增伟, 王锁, 等. 变论域自适应模糊PID主动悬架控制研究[J]. 机械科学与技术, 2018, 38(5): 713-720.
SHI P C, XU Z W, WANG S, et al. Variable universe adaptive fuzzy PID control of active suspension [J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 38(5): 713-720. (in Chinese)
[15]徐飞飞, 纪明, 赵创社. 快速偏转反射镜研究现状及关键技术[J]. 应用光学, 2010,31(5):847-850.
XU F F, JI M, ZHAO C S. Status of fast steering mirror[J]. Journal of Applied Optics, 2010, 31(5):847-850.(in Chinese)
[16]徐新行, 杨洪波, 王兵, 等. 快速反射镜关键技术研究[J]. 激光与红外, 2013,43(10):1095-1103.
XU X H, YANG H B, WANG B, et al. Research on key technology of fast-steering mirror[J]. Laser & Infrared, 2013, 43(10): 1095-1103.(in Chinese)
[17]WANGH Q, CHEN B, LIU X P, et al. Robust adaptive fuzzy tracking control for pure-feedback stochastic nonlinear systems with input constraints[J]. IEEE Transactions onCybermetics, 2013,43(6): 2093-2104.
[18]宋超, 曹翱, 温家玺. 自适应模糊PID控制器的设计及MATLAB仿真[J]. 现代制造技术与装备, 2018(7):203-205.
SONG C, CAO A, WEN J X. Design of adaptive fuzzy PID controller and MATLAB simulation[J]. Modern Manufacturing Technology and Equipment, 2018(7):203-205.(in Chinese)
[19]赵继庭, 金刚石, 高旭辉. 基于快速反射镜的模糊自适应PID控制算法研究[J]. 激光与红外, 2018,48(6):756-761.
ZHAO J T, JIN G S, GAO X H. Fuzzy adaptive PID control algorithm based on fast steering mirror[J]. Laser & Infrared, 2018, 48(6):756-761.(in Chinese)
[20]LIU Z, WANG F, ZHANG Y, et al. Fuzzy adaptive quantized control for a class of stochastic nonlinear uncertain systems [J]. IEEE Transactions on Cybernetics, 2016,46(2): 524-534.
[21]LIU Y J, TONG S C.Adaptive fuzzy control for a class of nonlinear discrete-time systems with backlash[J]. IEEE Transactions on Fuzzy Systems, 2014,22(5): 1359-1365.
[22]李国勇, 杨丽娟. 神经·模糊·预测控制及其MATLAB实现[M]. 第4版. 北京:电子工业出版社,2018:187-215.
LI G Y, YANG L J. Neural-fuzzy-prediction control and MATLAB simulation[M]. 4th ed. Publishing House of Electronics Industry, 2018:187-215.(in Chinese)
[23]姜世平. 基于两自由度压电驱动快反镜的星光跟踪控制[J]. 压电与声光, 2019,41(6):877-879.
JIANG S P. Star tracking control system based on two-degree-of-freedom piezo-actuated fast steering mirror[J]. Piezoelectrics & Acoustooptics, 2019,41(6):877-879.(in Chinese)
[24]GAO Q, FENG G, WANG Y, et al. Universal fuzzy models and universal fuzzy controllers for stochastic non-affine nonlinear systems[J]. IEEE Transactions on Fuzzy Systems, 2013,21(2): 328-341.
[25]夏国清, 陈华珍. 模糊理论和PID相融合的两轮自平衡机器人智能控制系统[J]. 现代电子技术, 2018,41(21):117-120.
XIA G Q, CHEN H Z. Two-wheeled self-balancing robot's intelligent control system combining fuzzy theory and PID[J]. Modern Electronics Technique, 2018, 41(21):117-120.(in Chinese)
[26]冀常鹏, 孙巍. 变论域自适应模糊PID控制系统仿真与应用[J]. 测控技术, 2018,37(10):119-123.
JI C P, SUN W. Simulation and application of variable universe adaptive fuzzy-PID control system[J]. Measurement & Control Technology, 2018, 37(10):119-123.(in Chinese)
[27]皋元. 基于模糊智能控制系统应用于制药废水混凝装置研究[D]. 上海:上海应用技术大学, 2019.
GAO Y. Research on application of fuzzy intelligent control system to pharmaceutical wastewater coagulation device[D]. Shanghai: Shanghai Institute of Technology, 2019.(in Chinese)
[28]陈炫瑞. 一种履步康复机器人的设计与研究[D]. 合肥:合肥工业大学, 2019.
CHEN X R. Design and research of a walking step rehabilitation robot[D]. Hefei: Hefei University of Technology, 2019.(in Chinese)
[29]赵修平, 王天辉, 林琨山, 等.导弹发射装置伺服系统模糊PID控制研究[J]. 现代防御技术, 2012,40(3):63-66,119.
ZHAO X P, WANG T H, LIN K S, et al. Missile lancher's servo system based on fuzzy PID controller[J]. Modern Defence Technology, 2012,40(3):63-66,119.(in Chinese)
[30]张祺, 侯力, 蒋维旭, 等. 数控机床进给伺服系统模糊自适应PID仿真[J]. 机械设计与制造, 2011(9):149-151.
ZHANG Q, HOU L, JIANG W X, et al. Adaptive fuzzy-PID simulation for the feeding servo system of numerical controlling tool[J]. Machinery Design & Manufacture, 2011(9):149-151.(in Chinese)
[31]王晓侃, 王亮. 基于MATLAB的模糊PID参数自整定控制器设计与研究[J]. 新技术新工艺, 2016(11):26-28.
WANG X K, WANG L. Design and research based on fuzzy PID-parameters self-tuning controller with MATLAB[J]. New Technology & New Process, 2016(11):26-28.(in Chinese)
[32]高能固体激光武器导引系统第4部分导引动态性能测试方法:WJ 20175.4—2016[S].北京:国家国防科技工业局,2016.
Guidance system of high energy solid state laser weapon system-part 4: test method for dynamic performance of guidance system: WJ 20175.4—2016[S]. Beijing: State Administration of Science, Technology and Industry for National Defence, 2016. (in Chinese)


Accesses

Citation

Detail

段落导航
相关文章

/