High-resolution Staring Imaging of Missile-borne Phased Array Detector Based on Wavefront Coding
CHENG Cheng1,2, GAO Min1, ZHOU Xiaodong3, JI Yongxiang4, ZONG Zhulin5
Author information+
(1.Department of Missile Engineering, Shijazhuang Campus, Army Engineering University, Shijiazhuang 050003, Hebei, China;2.Unit 32180 of PLA, Beijing 100072, China;3.Department of Ammunition Engineering, Shijazhuang Campus, Army Engineering University, Shijiazhuang 050003, Hebei, China;4. Huayin Weapon Test Center,Huayin 714200,Shaanxi,China;5.Institute of Electronic Science and Technolog,University of Electronic Science and Technology of China,Chengdu 611731,Sichuan,China)
The imaging algorithm of the missile-borne phased detector is studied to realize the forward-looking high-resolution imaging of new precision guided munitions. A high-resolution staring imaging algorithm based on wavefront coding is proposed,in which the adaptive monopulse response curve (MRC) is used to realize forward-looking high-resolution detection. The wavefront coding is used to detect the non-planar wavefront of beam,so as to increase the effective information of the strong scattering points in the target area carried by the instantaneous echo signal. Adaptive MRC is used to provide the capability of high-resolution azimuth angle measurement for missile,and MRC is directly optimized by using echo signal to focus the angle measurement section. The factors (such as SNR and random modulation range) affecting imaging accuracy are studied. The simulation experimental and field test results show that the maximun imaging error of non-planar wavefront is 2.4 m,the error of azimuth and distance is less than 2.5 m when using the actual echo signal,which can meet the actual needs of the missile. Key
CHENG Cheng, GAO Min, ZHOU Xiaodong, JI Yongxiang, ZONG Zhulin.
High-resolution Staring Imaging of Missile-borne Phased Array Detector Based on Wavefront Coding. Acta Armamentarii. 2020, 41(6): 1041-1055 https://doi.org/10.3969/j.issn.1000-1093.2020.06.001
基金
装备“十三五”预先研究项目(30107030803)
{{custom_fund}}
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]陈硕,罗成高,邓斌,等.太赫兹孔径编码成像分辨率性能研究[J].雷达学报,2018,7(1): 127-138. CHEN S,LUO C G,DENG B,et al.Research on resolution of terahertz coded- apertureimaging[J].Journal of Radar,2018,7(1):127-138. (in Chinese) [2]邓斌,陈硕,罗成高,等.太赫兹孔径编码成像研究综述[J].红外与毫米波学报,2017,36(3): 302-310. DENG B,CHEN S,LUO C G,et al.Review of terahertz coded- apertureimaging[J]. Journal of Infrared and Millimeter Waves,2017,36(3): 302-310. (in Chinese) [3]PAND,WANG Y Y,XU D G,et al. Signal pixel imaging with tunable terahertz parametric oscillator[J].Applied Optics,2016,55(13): 3670-3675. [4]DARPA. Advanced scanning technology for imaging radars (ASTIR)[R].Arlington, VA, US: DARPA, 2015. [5]LI D Z,LI X,CHENG Y Q,et al.Radar coincidence imaging:an instantaneous imaging technique with stochastic signal[J].IEEE Transactions on Geoscience and Remote Sensing,2014,52(4): 2261-2277. [6]CUIT J,QI M Q,WAN X,et al.Coding metamaterials,digital metamaterials and programmable metamaterials[J].Light: Science & Applications,2014,3(10): e218. [7]SIEGEL P H.Terahertz technology[J].IEEE Transactions on Microwave Theory and Techniques,2002,50(3): 910-928. [8]YU N F,GENEVET P,KATS M A,et al.Light propagation with phase discontinuities:generalized laws of reflection and refraction[J]. Science,2011,334(6054): 333-337. [9]HANSEN P C.Rank-deficient and discrete Ill-posed problems: numerical aspects of linear inversion[M].Philadelphia,PA,US: Society for Industrial and Applied Mathematics,1998: 45-67.
[10]于涤非,张春华,黄勇.改进型圆面阵的快速波束形成算法设计[J].兵工学报,2017,38(5): 959-967. YU D F,ZHANG C H,HUANG Y. Design of fast beam forming of improved circular planar array[J].Acta Armamentarii,2017,38(5): 959-967.(in Chinese) [11]李从利,薛松,陆文骏,等.弹载侦查图像质量评价方法研究[J]. 兵工学报,2017,38(1): 64-72. LI C L,XUE S,LU W J,et al. Research on on-board reconnaissance images quality assessment[J]. Acta Armamentarii,2017,38(1): 64-72.(in Chinese) [12]MASSIMILIANOR,RICCARDO M L,MARCO F,et al.Experimental implementation of a passive millimeter-wave fast sequential lobing radiometric seeker sensor[J]. Aerosapce,2018,5(1):5010011. [13]OGWORONJO H C,ANDERSON J M M,NGUYEN L H.An iterative parameter-free algorithm with an application to forward lookingGPR imaging[J].IEEE Transactions on Geoscience and Remote Sensing,2017,55(3): 1573-1586. [14]HYUKJUNGL,JOOHWAN C,SUNGCHAN S. Forward-looking GMTI and estimation of position and velocity based on millimeter-wave(W-band) FMCW SAR[J].The Journal of Korean Institute of Electromagnetic Engineering and Science,2017,28(8): 636-645. [15]SON E H,YOON C B.A study on UAV DOA estimation accuracy improvement using monopulse tracking[J].The Journal of the Korea Institute of Electronic Communication Sciences,2017,12(6):1121-1126. [16]GLASS J D,BLAIR W D,LANTERMAN A D.Joint-bin monopulse processing of rayleigh targets[J].IEEE Transactions on Signal Processing,2015,63(24): 6673-6683. [17]孙玉雪,罗迎,张群,等.基于线性调频步进信号的空间自旋目标时变三维成像方法[J].系统工程与电子技术, 2018,40(1):23-31. SUN Y X,LUO Y,ZHANG Q,et al.Time-varying three dimensional imaging for space rotating targets with stepped-frequency chirp signal[J].Systems Engineering and Eletronics,2018,40(1):23-31.(in Chinese) [18]郭琨毅,牛童瑶,盛新庆.散射中心对单脉冲雷达测角的影响研究[J].电子与信息学报,2017,39(9): 2238-2244. GUO K Y,NIU T Y,SHENG X Q. Influence of multiple scattering centers with various attributes on radar angular measurements[J].Journal of Electronics & Information Technology,2017,39(9):2238-2244.(in Chinese) [19]刘忠泽,陈慧岩,崔星,等.无人平台越野环境下同步定位与地图创建[J].兵工学报,2019,40(12): 2399-2406. LIU Z Z,CHEN H Y,CUI X,et al. Real-time LiDAR SLAM in off-road environment for UGV[J].Acta Armamentarii,2019,40(12):2399-2406.(in Chinese) [20]程呈,高敏,周晓东,等.弹载单脉冲探测器前视测高策略研究[J]. 兵工学报,2019,40(9): 1819-1828. CHENG C,GAO M,ZHOU X D,et al. Research on looking-forward altimetry strategy for missile-borne monopulse detector[J]. Acta Armamentarii,2019,40(9): 1819-1828.(in Chinese)