调频连续波引信高功率微波前门耦合效应研究

陈凯柏;高敏;周晓东;惠江海

兵工学报 ›› 2020, Vol. 41 ›› Issue (5) : 881-889.

兵工学报 ›› 2020, Vol. 41 ›› Issue (5) : 881-889. DOI: 10.3969/j.issn.1000-1093.2020.05.007
论文

调频连续波引信高功率微波前门耦合效应研究

  • 陈凯柏1, 高敏1, 周晓东2, 惠江海1
作者信息 +

Research on Coupling Effect of High-power Microwave Front-gate in FMCW Fuze

  • CHEN Kaibai1, GAO Min1, ZHOU Xiaodong2, HUI Jianghai1
Author information +
文章历史 +

摘要

针对调频连续波引信在高功率微波辐照下的前门耦合问题,对引信射频前端进行场路联合仿真实验。利用仿真软件建立引信射频前端模型,采用先辐照、后注入的实验方法对引信前门耦合效应进行分析。实验结果表明:引信射频前端敏感元器件容易被耦合进入的高功率微波毁伤,当脉冲信号上升时间较短时,毁伤效果更为明显;当高功率微波源与引信距离较远时,引信的正常测距功能会受到干扰,但脉冲信号的平顶宽度变化所造成的干扰效应并不明显。

Abstract

The field-circuit joint simulation test of the fuze RF front-end was made for the front-gate coupling of fuze under high-power microwave irradiation. A RF front-end model of fuze is established by simulation software, and the coupling effect of front-gate of fuze is analyzed by the test method of irradiation before injection. The test results show that the sensing elements of RF front-end of fuze are easy to be damaged by high-power microwave. The damage effect of high-power microwave is more obvious when the rise time of pulse signal is short; and when the distance between HPM source and fuze is long, the normal ranging function of fuze will be disturbed, but the interference effect caused by the change of flat top width of pulse signal is not obvious. Key

关键词

调频连续波引信 / 高功率微波 / 前门耦合效应 / 联合仿真

Key words

FMCWfuze / high-powermicrowave / front-gatecouplingeffect / jointsimulation

引用本文

导出引用
陈凯柏, 高敏, 周晓东, 惠江海. 调频连续波引信高功率微波前门耦合效应研究. 兵工学报. 2020, 41(5): 881-889 https://doi.org/10.3969/j.issn.1000-1093.2020.05.007
CHEN Kaibai, GAO Min, ZHOU Xiaodong, HUI Jianghai. Research on Coupling Effect of High-power Microwave Front-gate in FMCW Fuze. Acta Armamentarii. 2020, 41(5): 881-889 https://doi.org/10.3969/j.issn.1000-1093.2020.05.007

基金

装备科研项目(LJ20182A050323)

参考文献



[1]ARORAV K. Proximity fuzes: theory and techniques [M]. New Delhi, India: Defence Research & Development Organisation, 2010: 1-2.
[2]蒙林, 李天明, 李浩. 国外高功率微波发展综述[J]. 真空电子技术, 2015(2): 8-12.
MENG L, LI T M, LI H. Developments of high power microwave abroad[J]. Vacuum Electronics, 2015(2): 8-12. (in Chinese)
[3]钱宝良. 国外高功率微波技术的研究现状与发展趋势[J].真空电子技术, 2015(2): 1-7.
QIAN B L. The research status and developing tendency of high power microwave technology in foreign countries[J]. Vacuum Electronics, 2015(2): 1-7. (in Chinese)
[4]魏光辉, 潘晓东, 卢新福. 注入与辐照相结合的电磁辐射安全裕度试验方法[J]. 高电压技术, 2012, 38(9): 2213-2220.
WEI G H, PAN X D, LU X F. Test method for electromagnetic radiation safety margin combined injection with radiation[J]. High Voltage Engineering, 2012, 38(9): 2213-2220. (in Chinese)
[5]熊久良, 武占成, 孙永卫, 等. 多自由度全自动引信辐照试验台的研制与性能测试[J]. 高电压技术, 2017, 43(5): 1715-1721.
XIONG J L, WU Z C, SUN Y W, et al. Development and performance measurement of multi-DOF and fully automatic fuze irradiation experimental platform[J]. High Voltage Engineering, 2017, 43(5): 1715-1721. (in Chinese)
[6]熊久良. 典型米波无线电引信电磁脉冲辐照效应[J]. 高电压技术, 2017, 43(10): 3371-3380.
XIONG J L. Irradiation effect of EMP on typical metric wave radio fuze[J]. High Voltage Engineering, 2017, 43(10): 3371-3380. (in Chinese)
[7]熊久良, 武占成, 孙永卫, 等.连续波多普勒引信雷电电磁脉冲辐照效应[J]. 强激光与粒子束, 2015, 27(4): 157-162.
XIONG J L, WU Z C, SUN Y W, et al. LEMP irradiation effects on continuous wave Doppler fuze[J]. High Power Laser and Particle Beams, 2015, 27(4):157-162. (in Chinese)
[8]杨洁, 王彪, 王书平, 等.无线电引信电磁辐射能量耦合路径研究[J]. 装备环境工程, 2017, 14(4): 21-25.
YANG J, WANG B, WANG S P, et al. Energy coupling path of radio fuze under the electromagnetic radiation conditions[J]. Equipment Environmental Engineering, 2017, 14(4): 21-25. (in Chinese)
[9]周鹏. 用于接收机高功率微波防护的ESS技术研究[D]. 西安: 西安电子科技大学, 2018: 43-60.
ZHOU P. Research on ESS technology for receiver high power microwave protection[D]. Xi'an: Xidian University, 2018: 43-60.(in Chinese)

[10]余道杰, 张长峰, 彭平, 等. 高功率微波大气传输折射指数和衰减系数计算统一模型[J]. 微波学报, 2008, 24(5): 74-77.
YU D J, ZHANG C F, PENG P, et al. Unified calculation modelof the refractive index and attenuation coefficient for high power microwave propagation in the atmosphere[J]. Journal of Microwaves, 2008, 24(5): 74-77. (in Chinese)
[11]王元恺. 调频序列汽车雷达信号处理方法研究[D]. 南京: 南京理工大学, 2018: 18-21.
WANG Y K.Research on signal processing method for chirp sequence automotive radar[D]. Nanjing: Nanjing University of Science and Technology, 2018: 18-21. (in Chinese)
[12]胡锐. 卫星导航接收机强电磁脉冲耦合机理研究[D].北京: 北京交通大学, 2018: 11-12.
HU R.Research on the coupling mechanism of strong electromagnetic pulse for satellite navigation receiver[D]. Beijing: Beijing Jiaotong University, 2018: 11-12. (in Chinese)
[13]李吉浩. 高功率脉冲对PIN限幅器的毁伤效应研究 [J]. 微波学报, 2012,28(S3): 315-318.
LI J H. Research on HPM pulse damage effect of PIN limiter[J]. Journal of Microwaves, 2012,28(S3): 315-318. (in Chinese)
[14]李杨. 24 GHz车载毫米波雷达射频前端设计与研究[D]. 合肥: 安徽理工大学, 2018: 17-30.
LI Y. Design and research of RF front-end of 24 GHz vehicle millimeter wave radar[D]. Hefei: Anhui University of Science and Technology, 2018: 17-30. (in Chinese)






第41卷第5期2020年5月
兵工学报ACTA ARMAMENTARII
Vol.41No.5May2020

Accesses

Citation

Detail

段落导航
相关文章

/