为研究枪弹穿甲后效破片对有防护人员的杀伤作用效能,采用一种易碎钨合金弹芯材料的穿甲枪弹、10 mm厚均质钢板和典型聚乙烯(PE)复合材料防弹衣,进行穿甲后效试验。分析穿甲后效破片的质量分布和飞散规律,以及两种不同速度弹头穿甲后效破片对防弹衣的侵彻毁伤效果。研究结果表明:枪弹穿甲后效破片的质量分布范围较大,后效破片在距离防护钢板1.4 m处的散布半径为21.3 cm;枪弹穿甲形成的不规则后效破片对PE防弹衣各纤维层的破坏模式以剪切破坏为主,纤维材料在发生剪切破坏的同时,伴有纤维材料的熔融、灼烧破坏;在后效破片密集作用区,各侵彻孔间的边界相互交叉产生撕裂破坏,形成了相互连通的大破口,且大破口周围产生纤维撕裂扩展,能够加剧破坏程度。
Abstract
In order to explore the killing ability of the after-effect fragments of bullet, an after-effect experimental was carried out based on an armor-piercing bullet with tungsten alloy penetrator, 10 mm-thick homogeneous steel plate and a typical polyethylene composite body armor. The mass distribution and dispersion law of after-effect fragments and the penetration effects of after-effect fragments penetrating into body armor at different velocities are analyzed. The results show that the mass distribution range of after-effect fragments is larger; the dispersion radius of after-effect fragmentsat 1.4 m from the protective steel plate is 21.3 cm; the failure mode of body armor is dominated by shear failure, and at the same time, it is accompanied by the melting and burning damages. The boundary between penetrationholes is torn due to the boundary intersection, and a large open gap is formed to develop tear propagation and exacerbate the damage. Key
关键词
枪弹 /
穿甲后效破片 /
防弹衣 /
侵彻毁伤特性 /
聚乙烯复合材料
{{custom_keyword}} /
Key words
bullet /
after-effectfragment /
bodyarmor /
penetrationdamagecharacteristic /
polythenecomposite
{{custom_keyword}} /
基金
国家自然科学基金项目(11772303);国家部委联合基金项目(6141B02010304); 国防基础科研项目(JKCYS2019209C001); 瞬态冲击技术重点实验室基金项目(61426060104162606008)
{{custom_fund}}
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]邹渝,李曙光,肖南. 单兵防弹衣对穿甲破片的防护效应研究[J]. 医疗卫生装备,2015, 36(11): 36-38.
ZOU Y, LI S G, XIAO N.Study on protective effect of individual bullet-proof cloth against armor-piercing fragments[J]. Chinese Medical Equipment Journal, 2015, 36(11):36-38. (in Chinese)
[2]张松松,陈英,薛建锋. 脱壳弹穿甲后效及引燃性能的试验研究[J]. 兵器装备工程学报,2017,38(1): 40-43.
ZHANG S S, CHEN Y, XUE J F. Experimental study on APDS penetration after-effect and ignition performance[J]. Journal of Ordnance Equipment Engineering, 2017, 38(1):40-43. (in Chinese)
[3]贾福庆. 小口径易碎型穿甲弹穿甲毁伤特性研究[D].南京:南京理工大学, 2010.
JIA F Q. A study on the damage characteristics of small-diameter fragile armor piercing projectile[D].Nanjing:Nanjing University of Science and Technology, 2010. (in Chinese)
[4]STILPA J, WEBER K. Debris clouds behind double-layer targets[J]. International Journal of Impact Engineering,1997, 20(6): 765-778.
[5]PEDERSEN B, BLESS S. Behind-armor debris from the impact of hypervelocity tungsten penetrators[J].International Journal of Impact Engineering,2006, 33(1): 605-614.
[6]吴成,艾东民,李京. 小口径榴弹破片质量分布规律计算模型[J]. 弹箭与制导学报,2002, 22(2): 35-37,41.
WU C, AI D M, LI J. A discussion on a calculation model of fragment mass distribution for small diameter howitzer projectile[J]. Journal of Projectiles, Rokets, Missiles and Guidance,2002, 22(2): 35-37,41. (in Chinese)
[7]付塍强,李向东,蔡振华. 动能杆斜撞击靶板后效破片描述研究[J]. 爆炸与冲击,2004, 24(6): 503-508.
FU C Q, LI X D,CAI Z H. Description of the debris behind oblique single plate target perforated by kinetic projectile[J]. Explosion and Shock Waves,2004, 24(6): 503-508. (in Chinese)
[8]CHENW, HUDSPETH M, GUO Z, et al. Multi-scale experiments on soft body armors under projectile normal impact[J]. International Journal of Impact Engineering,2017, 108: 63-72.
[9]BANDARUA K, AHMAD S, BHATNAGAR N. Ballistic performance of hybrid thermoplastic composite armors reinforced with Kevlar and basalt fabrics[J]. Composites Part A: Applied Science and Manufacturing,2017, 97: 151-165.
[10]王晓强,朱锡,梅志远,等. 超高分子量聚乙烯纤维增强层合厚板抗弹性能实验研究[J]. 爆炸与冲击,2009, 29(1): 29-34.
WANG X Q, ZHU X, MEI Z Y, et al. Ballistic performances of ultra-high molecular weight polyethylene fiber-reinforced thick laminated plates[J]. Explosion and Shock Waves, 2009, 29(1): 29-34. (in Chinese)
[11]侯海量,朱锡,阚于龙. 轻型陶瓷复合装甲结构抗弹性能研究进展[J]. 兵工学报,2008, 29(2): 208-216.
HOU H L, ZHU X, KAN Y L. The advance of ballistic performanceof light ceramic composite armour under the impact of projectile[J].Acta Armamentarii, 2008, 29(2):208-216. (in Chinese)
[12]方志威,侯海量,李永清,等. 纤维增强复合材料夹芯结构抗高速破片侵彻数值模拟[J].船海工程,2018, 47(4): 21-25.
FANG Z W, HOU H L, LI Y Q, et al. Simulation of the fiber reinforced composite sandwich structure subjected to high velocity fragment impact[J]. Ship & Ocean Engineering,2018, 47(4): 21-25. (in Chinese)
[13]周捷,智小琦,徐锦波,等. 小尺寸破片对单兵防护装备的侵彻研究[J]. 爆炸与冲击,2018,39(2): 503-508.
ZHOU J, ZHI X Q, XU J B, et al. Research on penetration of small size fragment to single soldier protection equipment[J]. Explosion and Shock Waves,2018,39(2): 503-508. (in Chinese)
[14]GUOAY B, CHIANG H J, DENG J J, et al. Projectile impact on fabric-metal assemblies-Influence of fabric-metal sequence[J]. International Journal of Impact Engineering,2019, 127:1-16.
[15]郑折,李晓彬,霍契机. 圆柱形破片侵彻纤维增强复合材料三明治板的弹道极限模型[J]. 振动与冲击,2018, 37(8): 17-21.
ZHENG Z, LI X B, HUO Q J. A model for ballistic limit of a cylindrical fragment penetrating a FRP sandwich plate[J]. Journal of Vibration and Shock,2018, 37(8): 17-21. (in Chinese)
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}