为分析活性药型罩配方、炸高对混凝土靶毁伤威力影响规律,开展了活性射流作用混凝土靶侵彻与爆炸联合毁伤效应研究。采用实验和数值模拟相结合的方法,对活性射流作用混凝土靶的典型毁伤模式进行探究,给出了配方与炸高对毁伤效应的影响特性。实验结果表明:活性射流作用下,混凝土靶呈现为显著的锥形爆坑和裂纹毁伤效应;气体产物量较高配方的活性射流对混凝土靶产生更强的毁伤效应;在1倍装药直径炸高下,炸坑直径可达10倍装药直径以上。基于有限元分析软件AUTODYN-3D平台开展了活性射流对混凝土靶侵彻与爆炸行为的数值模拟,揭示了炸高对毁伤效应的影响机理:随着炸高的增大,进入侵坑内部的活性材料随之减少,活性射流对混凝土的侵彻深度呈现先增大、后减小的趋势;当炸高为1倍装药直径时,活性射流动能侵彻与爆炸反应延迟匹配较好,侵彻与爆炸联合毁伤威力较强。数值模拟结果与实验结果吻合较好。
Abstract
The penetration and damage effects of reactive material jet on concrete target are studied through experiment and simulation. The typical damage pattern of concrete target subjected to reactive jet was obtained, and the influences of formulation and stand-off distance on damage effect were studied.The experimental results show that the reactive jet produces a large conical crater and a crack zone in concrete target.The reactive liner with more gaseous products induce more violent damage on the concrete target. The produced crater diameter is over 10 times of the shaped charge diameter at a stand-off distance of 1.0D. Based on the AUTODYN-3D platform, the reactive jet against concrete target is numerically simulated to reveal the influence mechanism of the stand-off distance on the damage effect. With the increase in stand-off distance, the amount of reactive material penetrating into the crater trajectory decreases, and the penetration depth increases firstly and then decreases. The kinetic penetration time and the reaction delay time of reactive materials match well at the stand-off distance of 1.0D. Key
关键词
活性射流 /
混凝土靶 /
侵彻与爆炸 /
配方 /
炸高
{{custom_keyword}} /
Key words
reactivematerialjet /
concretetarget /
penetrationandburst /
formulation /
stand-offdistance
{{custom_keyword}} /
基金
国防基础科研计划重点项目(JCKY2016602B006)
{{custom_fund}}
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]DETechnologies, Inc. Reactive fragment warhead for enhanced neutralization of mortar, rocket, & missile threats [EB/OL]. ONR-SBIR: N04-903, (2006-05-15) [2011-05-16]. http:∥www. detk. com.
[2]NABLEJ, MERCADO A, SHERMAN A. Novel energetic composite materials [C]∥Proceedings of Materials Research Society Symposium. Boston, MA,US: Materials Research Society,2006:0896-H01-03.
[3]BAKERE L, DANIELS A S, NG K W, et al. Barnie: a unitary demolition warhead[C]∥Proceedings of the 19th International Symposium on Ballistics. Interlaken, Switzerland:International Ballistics Committee, 2001:569-574.
[4]DANIELSA S, BAKER E L, DEFISHER S E,et al. BAM BAM: large scale unitary demolition warheads[C]∥Proceedings of the23rd International Symposium on Ballistics. Tarragona, Spain:International Ballistics Committee, 2007: 239-246.
[5]WANGY Z, YU Q B, ZHENG Y F, et al. Formation and penetration of jets by shaped charges with reactive material liners[J].Propellants, Explosives, Pyrotechnics, 2016:41(4):618-622.
[6]XIAOJ G, ZHANG X P, WANG Y Z, et al. Demolition mechanism and behavior of shaped charge with reactive liner[J].Propellants, Explosives, Pyrotechnics, 2016:41(4):612-617.
[7]XIAOJ G, ZHANG X P, GUO Z X, et al. Enhanced damage effects of multi-layered concrete target produced by reactive materials liner[J].Propellants, Explosives, Pyrotechnics, 2018, 43(9): 955-961.
[8]高本兵,尹建平,陈杰,等.基于SPH方法的不同材质射流毁伤性能研究[J].北京理工大学学报,2018,38(4):353-358.
GAO B B, YIN J P, CHEN J, et al. Study on damage characteristics of different jets based on SPH method[J].Transactions of Beijing Institute of Technology, 2018,38(4):353-358.(in Chinese)
[9]张雪朋,肖建光,余庆波,等.活性药型罩聚能装药破甲后效超压特性[J].兵工学报,2016,37(8):1388-1394.
ZHANG X P, XIAO J G, YU Q B, et al. Armor penetration aftereffect overpressure produced by reactive material liner shaped charge[J].Acta Armamentarii, 2016,37(8):1388-1394.(in Chinese)
[10]AMESR G. Energy release characteristics of impact-initiated energetic materials[C]∥Proceeding of Materials Research Society Symposium. Boston,MA,US: Materials Research Society, 2006: 78-83.
[11]杨军,陈鹏万,胡刚. 现代爆破技术[M].北京: 北京理工大学出版社, 2005: 68-76.
YANG J, CHEN P W, HU G.Modern demolition technology[M]. Beijing: Beijing Institute of Technology Press, 2005:68-76.(in Chinese)
[12]郑元枫.活性材料撞击起爆行为及毁伤增强效应研究[D].北京:北京理工大学, 2012.
ZHENG Y F. Research on enhanced lethality effects and mechanisms of reactive materials [D].Beijing: Beijing Institute of Technology, 2012.(in Chinese)
[13]RAFTENBERGM N, MOCK J W, KIRBY G C, et al. Modeling the impact deformation of rods of a pressed PTFE/Al compo- sitemixture [J].International Journal of Impact Engineering, 2008,35(12): 1735-1744.
[14]ROSENCRANTZS D. Characterization and modeling methodology of polytetrafluorothylene based reactive materials for the deve- lopmentof parametric models[D].Dayton,OH, US: Wright State University,2007.
第40卷第9期
2019年9月兵工学报ACTA
ARMAMENTARIIVol.40No.9Sep. 2019
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}