为了有效减小车辆在水中的形状阻力,需要将轮式两栖车的轮子提升到水线以上。针对该需求提出了一种水陆两栖车可收放悬架方案。对两栖车收放悬架进行运动学分析,得到了其运动规律;制定了悬架参数优化策略,以提高悬架在水中的收放高度,改善陆地的行驶特性;在多体动力学软件ADAMS/Insight中设计了参数优化实验,通过分析参数灵敏度确定优化变量,根据所选的优化变量,分别以行走机构收放高度、翻转角度、外倾角以及主销内倾角等参数为优化目标进行优化设计。研究结果表明,车辆行走机构收放过程和运动学特性的优化效果明显,在保障陆上性能的同时大幅减小了水上航行阻力。
Abstract
In order to reduce the shape resistance of vehicles in water, it is necessary to raise the wheels of amphibious vehicles above the water line. A retractable suspension scheme for amphibious vehicles is proposed. Kinematics analysis is carried out to obtain the movement law of retractable suspension for vehicle. The optimization of suspension parameters is formulated to improve the retractable height of suspension. In the multi-body dynamics software ADAMS/Insight, the parameter optimization experiments are designed, and the optimization variables are determined by analyzing the sensitivity of parameters. According to the selected optimization variables, the optimization objectives are used to optimize the traveling mechanism, such as the receiving and unloading height, the turning angle, the camber angle and the kingpin inclination angle. The results show that the optimization effects of the retracting process and kinematics characteristics of the traveling mechanism are obvious, and the navigation resistance on water is greatly reduced while the land performance is guaranteed. Key
关键词
水陆两栖车 /
运动学分析 /
可收放悬架 /
参数优化
{{custom_keyword}} /
Key words
amphibiousvehicle /
kinematicsanalysis /
retractablesuspension /
parameteroptimization
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]GIBBSA T. A retractable wheel assembly for an amphibian: WO 2016/178035AI[P]. [2016-05-09].
[2]唐陈亮, 赵祥君, 于坤炎, 等. 美军水陆两栖轮式车辆发展趋势及启示[J]. 军事交通学院学报, 2012, 14(10): 88-91.
TANG C L, ZHAO X J, YU K Y, et al. On US amphibious wheeled vehicles development trends and its enlightenments [J]. Journal of Military Transportation University, 2012, 14(10): 88-91. (in Chinese)
[3]HELVACIOGLU S, HELVACIOGLU I H, TUNCER B. Improving the river crossing capability of an amphibious vehicle[J]. Ocean Engineering, 2011, 38(17/18): 2201-2207.
[4]郭张霞,李魁武,潘玉田,等. 基于CFD的两栖车辆阻力计算与预报研究[J]. 火炮发射与控制学报,2012(4):1-4.
GUO Z X, LI K W, PAN Y T. Research on calculation and prediction of amphibious vehicle resistance based on CFD theory[J]. Journal of Gun Launch & Control, 2012(4):1-4.
(in Chinese)
[5]陈革, 贾永前, 周子锐, 等. 两栖装甲车辆海上运动实时仿真方法[J]. 装甲兵工程学院学报, 2016, 30(3):68-71.
CHEN G, JIA Y Q, ZHOU Z R, et al. Real-time simulation method for movements of amphibious armored vehicles on the ocean[J]. Journal of Acamedy of Armored Force Engineering, 2016, 30(3):68-71.(in Chinese)
[6]余飞. 带有潜水功能的水陆两栖快艇总体设计及其关键技术研究[D].镇江: 江苏科技大学, 2015.
YU F. A study on the general design of amphibious speedboat with diving functionand its key technologies[D]. Zhenjiang: Jiangsu University of Science and Technology, 2015.(in Chinese)
[7]Gibbs Technologies Limited. Suspension retraction arrangement for an amphibious vehicle: UK2425511 [P].2006-01-11.
[8]GARYM, MENLO P. Amphibious vehicle:US5590617[P]. 1997-01-07.
[9]张文春. 汽车理论[M]. 第2版. 北京:机械工业出版社,2010.
ZHANG W C. Automotive theory[M]. 2nd ed. Beijing: China Machine Press, 2010.(in Chinese)
[10]徐一新,李书伟,王琪,等. 基于组合建模法的两栖车辆车体优化分析[J]. 计算机仿真,2013,30(3):173-176,183.
XU Y X, LI S W, WANG Q, et al. Optimization the body of amphibious vehicle via compositional modeling[J]. Computer Simulation, 2013, 30(3): 173-176,183. (in Chinese)
[11]贾小平, 马俊, 于魁龙, 等. 超高速水陆两栖车技术研究[J].机械研究与应用, 2015, 28(5):46-49.
JIA X P, MA J, YU K L, et al. Technology research on ultra high speed amphibious vehicle[J]. Mechanical Research and Application, 2015, 28(5):46-49.(in Chinese)
第40卷
第8期2019年8月兵工学报ACTA
ARMAMENTARIIVol.40No.8Aug.2019
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}