高聚物粘结炸药动态损伤破坏的数值刻画

魏强;黄西成;陈刚;陈鹏万

兵工学报 ›› 2019, Vol. 40 ›› Issue (7) : 1381-1389.

兵工学报 ›› 2019, Vol. 40 ›› Issue (7) : 1381-1389. DOI: 10.3969/j.issn.1000-1093.2019.07.007
论文

高聚物粘结炸药动态损伤破坏的数值刻画

  • 魏强1,2, 黄西成2, 陈刚2, 陈鹏万1
作者信息 +

Numerical Characterization of Dynamic Damage of PBX Explosive

  • WEI Qiang1,2, HUANG Xicheng2, CHEN Gang2, CHEN Pengwan1
Author information +
文章历史 +

摘要

高聚物粘结炸药(PBX)安全性评估离不开对其力学响应和损伤破坏的刻画。为了准确捕捉PBX炸药的力学行为,以Karagozian & Case模型框架为基础,开展了PBX炸药力学行为数值刻画的研究。修改Karagozian & Case模型中的损伤演化方式,考虑PBX炸药模量、损伤演化模式等压力依赖特性。结合法国原子能委员会Picart等给出的一系列试验数据,修正Karagozian & Case模型中的应变率效应,分析不同压力下PBX炸药拉压子午线之比的取值,处理结构损伤破坏过程中变形局部化的问题,提出数值计算中拉伸失效单元的处理方法。得到的模型很好地刻画了Steven 试验中炸药试件的成坑形貌,并成功捕捉到了炸药试件中的拉伸、剪切破坏图像。

Abstract

The safety assessment of PBX explosive is inseparable from the characterization of its mechanical response and damage. In order to accurately capture the mechanical behavior of PBX explosive, the numerical characterization method of PBX explosive mechanical behavior is studied based on Karagozian & Case (K&C) model framework. The damage evolution mode in the K&C model is modified, and the pressure-dependentcharacteristics of PBX explosive modulus and damage evolution mode are considered. Based on a series of published experimental data, the strain rate effect in the K&C model was corrected, the ratio of tension to compression meridian of PBX under different pressures was discussed, the deformation localization in the process of structural damage was dealt with, and the treatment of the tensile failure unit in the calculation was presented. The proposed model can be used to well depict the cratering morphology of explosive specimen in the Steven test, and successfully capture the tensile and shear failure images of explosive specimen. Key

关键词

高聚物粘结炸药 / 拉伸、压缩子午线之比 / 应变率效应 / 变形局部化 / 拉伸失效

Key words

polymerbondedexplosive / ratiooftensiletocompressionmeridian / strainrateeffect / strainlocalization / tensilefailure

引用本文

导出引用
魏强, 黄西成, 陈刚, 陈鹏万. 高聚物粘结炸药动态损伤破坏的数值刻画. 兵工学报. 2019, 40(7): 1381-1389 https://doi.org/10.3969/j.issn.1000-1093.2019.07.007
WEI Qiang, HUANG Xicheng, CHEN Gang, CHEN Pengwan. Numerical Characterization of Dynamic Damage of PBX Explosive. Acta Armamentarii. 2019, 40(7): 1381-1389 https://doi.org/10.3969/j.issn.1000-1093.2019.07.007

基金

国家自然科学基金项目(11472257、U1330202、11521062)

参考文献



[1]STEWARTJ B. A pressure-dependent damage model for energetic materials: ARL-RP-436 [R]. Aberdeen Proving Ground, MD, US: Army Research Laboratory,2013.
[2]XIAO Y C, SUN Y, ZHEN Y B, et al. Characterization, modeling and simulation of the impact damage for polymer bonded explosives[J]. International Journal of Impact Engineering, 2017,103:149-158.
[3]WANG X J, WU Y Q, HUANG F L, et al. Mesoscale thermal-mechanical analysis of impacted granular and polymer-bonded explosives[J]. Mechanics of Materials, 2016,99:68-78.
[4]BARUA A, ZHOU M. A Lagrangian framework for analyzing microstructural level response of polymer-bonded explosives[J]. Modelling and Simulation in Materials Science and Engineering, 2011, 19(5): 055001.
[5]LIU Z W, XIE H M, LI K X, et al. Fracture behavior of PBX simulation subject to combined thermal and mechanical loads[J]. Polymer Testing, 2009, 28(6):627-635.
[6]ELLIS K, LEPPARD C, RADESK H. Mechanical properties and damage evaluation of a UK PBX[J]. Journal of Materials Science, 2005, 40(23):6241-6248.
[7]ZHOU Z, CHEN P, DUAN Z, et al. Study on fracture behaviour of a polymer-bonded explosive simulant subjected to uniaxial compression using digital image correlation method[J]. Strain, 2012, 48(4):326-332.
[8]PARTHA R, DARLA G T, LIU C,et al. Modeling the mechanical response of PBX 9501[C]∥Proceedings of the 14th International DetonationSymposium. Coeur d'Alene, ID, US: University of Maryland, 2010:174-183.
[9]HERVE T, PHILIPPE L, GUILLAUME V, et al. Toward physically-based explosive modeling: meso-scale investigations[M]∥BUZAUD E, IONESCU I R, VOYIADJIS G Z. Materials under Extreme Loadings. London, UK: ISTE Ltd., 2013:179-207.

[10]REAUGHJ E. HERMES: A model to describe deformation, burning, explosion, and detonation: LLNL-TR-516119[R]. Livermore, CA, US: Lawrence Livermore National Laboratory, 2011.
[11]GRUAU C, PICART D, BELMAS R, et al. Ignition of a confined high explosive under low velocity impact[J]. International Journal of Impact Engineering, 2009, 36(4):537-550.
[12]GRATTON M, GONTIER C, RJA FI ALLAH S, et al. Mechanical characterization of a viscoplastic material sensitive to hydrostatic pressure [J]. European Journal of Mechanics A/Solids, 2009, 28(5):935-947.
[13]MALVAR L J, CRAWFORD J E, WESEVICH J W, et al. A plasticity concrete material model for DYNA3D[J]. International Journal of Impact Engineering, 1997, 19(9/10):847-873.
[14]BAILLY P, DELVARE F, VIAL J, et al. Dynamic behavior of an aggregate material at simultaneous high pressure and strain rate: SHPB triaxial tests[J]. International Journal of Impact Engineering, 2011, 38(2/3):73-84.
[15]WIEGAND D A, REDINGIUS B, ELLIS K, et al. Pressure and friction dependent mechanical strength-cracks and plastic flow[J]. International Journal of Solids and Structures, 2011, 48(11/12): 1617-1629.
[16]崔云霄, 陈鹏万, 刘龑龙, 等. PBX 9501炸药动态增强因子的预测公式[J]. 火炸药学报, 2015, 38(3):54-58.
CUI Y X, CHEN P W, LIU Y L, et al. Predicted formula of the dynamic increase factor of PBX9501[J]. Chinese Journal of Explosives & Propellants, 2015, 38(3):54-58.(in Chinese)
[17]WIEGAND D A. Constant strain criteria for mechanical failure of energetic materials[J]. Journal of Energetic Materials, 2003, 21(2): 109-124.
[18]唐维. PBX炸药的准静态本构模型与强度准则[D]. 南京:南京理工大学, 2016.
TANG W. Quasi-static constitutive model and strength criterion for PBX explosives[D]. Nanjing:Nanjing University of Science and Technology, 2016. (in Chinese)
[19]黄西成, 李尚昆, 魏强, 等. 基于XFEM与Cohesive模型分析PBX裂纹产生与扩展[J]. 含能材料, 2017, 25(8):694-700.
HUANG X C, LI S K, WEI Q, et al. Analysis of crack initiation and growth in PBX energetic material using XFEM-based cohesive method[J]. Chinese Journal of Energetic Materials, 2017, 25(8): 694-700. (in Chinese)
[20]GORDON R J, HOLMQUIST T J. Response of boron carbide subjected to large strains, high strain rates, and high pressures[J]. Journal of Applied Physics, 1999, 85(12):8060-8073.
[21]RALPH M, THOMAS D S. Constituent properties of HMX neededfor mesoscale simulations[J]. Combustion Theory and Modelling,2002, 6(1):103-125.
[22]吕玺琳. 岩土材料应变局部化理论预测及数值模拟[D]. 上海:同济大学, 2008.
L X L. Theoretical prediction and numerical simulation of strain localization for geomaterials[D]. Shanghai:Tongji University, 2008.(in Chinese)
[23]WANG X, MA S P, ZHAO Y T, et al. Observation of damage evolution in polymer bonded explosives using acoustic emission and digital image correlation[J]. Polymer Testing, 2011, 30(8):861-866.
[24]王小平, 孟国涛. 非局部化弹塑性理论及其应用[J].岩土力学与工程学报, 2007, 26(增刊1):2964-2967.
WANG X P, MENG G T. Nonlocal elastoplastic theory and its application[J]. Chinese Journal of Rock Mechanics and Engineering. 2007, 26(S1): 2964-2967.(in Chinese)
[25]VIAL J, PICART D, BAILLY P, et al. Numerical and experimental study of the plasticity of HMX during a reverse edge-on impact test[J].Modelling and Simulation in Materials Science and Engineering, 2013, 21(4): 045006.
[26]GRUAU C, PICART D. Numerical prediction of high explosive ignition under low velocity impact[J]. Foundations of Civil and Environmental Engineering, 2008, 1:33-48.






第40卷
第7期2019年7月兵工学报ACTA
ARMAMENTARIIVol.40No.7Jul.2019

268

Accesses

0

Citation

Detail

段落导航
相关文章

/