物性参数温度变化下激光熔覆多场耦合模拟与实验

李昌;于志斌;高敬翔;李云飞;韩兴

兵工学报 ›› 2019, Vol. 40 ›› Issue (6) : 1258-1270.

兵工学报 ›› 2019, Vol. 40 ›› Issue (6) : 1258-1270. DOI: 10.3969/j.issn.1000-1093.2019.06.017
论文

物性参数温度变化下激光熔覆多场耦合模拟与实验

  • 李昌1, 于志斌1, 高敬翔1, 李云飞2, 韩兴1
作者信息 +

Multi-field Coupling Simulation and Experiment of Laser Cladding under Thermal Dependent Physical Properties

  • LI Chang1, YU Zhibin1, GAO Jingxiang1, LI Yunfei2, HAN Xing1
Author information +
文章历史 +

摘要

激光熔覆存在热-弹性-塑性-流体多场耦合变化,影响对流、传热和传质,同时影响凝固过程。因熔池体积小、温度变化梯度大、具有极强的瞬时性,难以用实验方法动态跟踪并揭示多场耦合演变机理。建立了碟片激光器在45号钢基体熔覆Fe60过程三维模型,考虑了粉光作用,熔池表面张力、浮力对液态金属流动的影响,熔覆带形状的瞬时变化,以CALPHAD相图计算法得出基体和粉材的温度变化物性参数,计算得出温度场、流速场的分布与演变规律。计算结果表明:模拟预测得出的激光熔覆形态和凝固组织与通过Zeiss-ΣIGMA HD型场发射扫描电镜金相实验结果相吻合。

Abstract

The thermal-elastic-plastic-flow multi-field coupling changes exist in laser cladding, which affects convection, heat, mass transfer, and solidification process. The mechanism of multi-field coupling evolutionis hard to be dynamically tracked and revealed because of the small volume of molten pool, large temperature gradient and very strong instantaneous characteristics. A multi-field coupled 3D mathematical model of disk laser in the process of cladding Fe60 powder on 45 steel was established.The interaction between the powder flow and the laser energy beam, the influences of surface tension and buoyancy on the fluid flow in the melt pool, and the instantaneous change of cladding layer shape are taken into account in the proposed model. The thermal dependent physical properties of substrate and powder were obtained by using the CALPHAD phase diagram calculation method. The model was solved to obtain the distribution state and evolution law of temperature field and velocity field in the process of laser cladding. The results show that the laser cladding morphology and solidification microstructure predicted by simulation agree well with the metallographic results obtained by using Zeiss-IGMA HD field emission scanning electron microscope. Key

关键词

激光熔覆 / 多场耦合 / 温度变化物性参数 / 碟片激光器

Key words

lasercladding / multifieldcoupling / thermaldependentphysicalproperties / disklaser

引用本文

导出引用
李昌, 于志斌, 高敬翔, 李云飞, 韩兴. 物性参数温度变化下激光熔覆多场耦合模拟与实验. 兵工学报. 2019, 40(6): 1258-1270 https://doi.org/10.3969/j.issn.1000-1093.2019.06.017
LI Chang, YU Zhibin, GAO Jingxiang, LI Yunfei, HAN Xing. Multi-field Coupling Simulation and Experiment of Laser Cladding under Thermal Dependent Physical Properties. Acta Armamentarii. 2019, 40(6): 1258-1270 https://doi.org/10.3969/j.issn.1000-1093.2019.06.017

基金

国家自然科学基金项目(E050402、E51374127); 辽宁省自然科学基金项目(201602393); 辽宁省教育厅项目(2017FWDF01); 公安部消防重点实验室开放课题项目(KF201704); 辽宁科技大学创新团队项目(2018年)

参考文献



[1]GNANAMUTHUD S.High temperature coatings by surface melting: US.3952180 [P]. 1976-04-08.
[2]MAZUMDERJ, STEEN W M. Heat transfer model CW laser material processing [J]. Applied Physics, 1980, 51(2): 941-947.
[3]BRUCKERF, LEPSKI D, BEYER E.Modeling the influence of process parameters and additionalheat sources on residual stresses in laser cladding[J].Journal of Thermal Spray Technology, 2007, 16 (3): 355-373.
[4]KOUS, SUN D K. Fluid flow and weld penetration in stationary arc welds[J]. Metallurgical Transactions A, 1985, 16(2): 203-213.
[5]FOROOZMEHRE, KOVACEVIC R. Effect of path planning on the laser powder deposition process: thermal and structural evaluation[J]. International Journal of Advanced Manufacturing Technology, 2010, 51(5/6/7/8): 659-669.




图15激光熔覆中G和S对熔池凝固组织的影响
Fig.15Effects of G and S on the morphology of solidifled
microstructure in the process of laser cladding




图16激光熔覆过程中G变化
Fig.16Cloud charts of G during laser cladding



图17熔覆层的实验剖面与A、B、C点位置的微观组织
Fig.17Microstructures at the positions A, B and C on
experimental cross-section of cladding layer



[6]FARAHMANDP, KOVACEVIC R . An experimental-numerical investigation of heat distribution and stress field in single-and multi-track laser cladding by a high-power direct diode laser[J]. Optics and Laser Technology, 2014, 63(11): 154-168.
[7]GAOW Y, ZHAO S S, WANG Y B, et al. Numerical simulation of thermal field and Fe-based coating doped Ti[J]. International Journal of Heat & Mass Transfer, 2016, 92(1):83-90.
[8]PICASSOM, HOADLEY A F A . Finite element simulation of laser surface treatments including convection in the melt pool[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 1994, 4(1):61-83.
[9]TOYSERKANIE, KHAJEPOUR A, CORBIN S. Three-dimensional finite element modeling of laser cladding by powder injection: effects of powder feedrate and travel speed on the process[J]. Journal of Laser Applications, 2003, 15(3):153.

[10]GANZ T, YU G, HE X L, et al. Numerical simulation of thermal behavior and multicomponent mass transfer in direct laser deposition of Co-base alloy on steel[J]. International Journal of Heat and Mass Transfer, 2017, 104:28-38.
[11] LUGSCHEIDERE, BOLENDER H, KVAPPITZ H. Laser cladding of paste bound hardfacing alloys[J].Surface Engineering, 1991, 7(4): 341-346.
[12]FELLOWSF C J, STEEN W M, COLEY K S.Ceramic coatings for high temperature corrosion resistance by laser processing[J]. Key Engineering Materials, 1990, 46/47: 435-446.
[13]周佳平.激光沉积制造应力演化及其控制[D].沈阳:沈阳航空航天大学,2016:15-20.
ZHOU J P. Research on stress evolution mechanism and control of laser deposition manufacturing[D]. Shenyang: Shenyang Aerospace University, 2016: 15-20. (in Chinese)
[14]王福雨,刘伟军,赵宇辉.复杂薄壁零件激光快速成型过程热力耦合场的数值模拟[J].机械工程学报,2013,49(5):192-198.

WANG F Y, LIU W J, ZHAO Y H. Thermo-mechanical coupling field simulation of complex thin-wall part laser rapid prototype process[J]. Journal of Mechanical Engineering, 2013, 49(5):192-198. (in Chinese)
[15]龙日升,刘伟军,卞宏友.扫描方式对激光金属沉积成形过程热应力的影响[J].机械工程学报,2007,43(11):74-81.
LONG R S, LIU W J, BIAN H Y. Effects of scanning methods on thermal stress during laser metal deposition shaping[J]. Chinese Journal of Mechanical Engineering, 2007, 43(11): 74-81. (in Chinese)
[16]李嘉宁.激光熔覆技术及应用[M].北京:化学工业出版社,2016:93-94.
LI J N. Laser cladding technology and its application[M]. Beijing: Chemical Industry Press, 2016: 93-94. ( in Chinese)

[17]陈小明,王海金,周夏凉,等.激光表面改性技术及其研究进展[J].材料导报,2018,32(增刊1):341-344.
CHEN X M, WANG H J, ZHOU X L,et al. Laser surface modification technology and research progress[J].Materials Review, 2018, 32(S1): 341-344. (in Chinese)
[18]REDDYL, PRESTON S P, SHIPWAY P H, et al. Process parameter optimisation of laser clad iron based alloy: predictive models of deposition efficiency, porosity and dilution[J]. Surface and Coatings Technology, 2018, 349(17):198-207.
[19]HEX, MAZUMDER J . Transport phenomena during direct metal deposition[J]. Journal of Applied Physics, 2007, 101(5):053113-1-053113-9.




第40卷第6期
2019年6月兵工学报ACTA
ARMAMENTARIIVol.40No.6Jun.2019

454

Accesses

0

Citation

Detail

段落导航
相关文章

/