不同升温速率下模块装药慢速烤燃特性的数值模拟

刘静;余永刚

兵工学报 ›› 2019, Vol. 40 ›› Issue (5) : 990-995.

兵工学报 ›› 2019, Vol. 40 ›› Issue (5) : 990-995. DOI: 10.3969/j.issn.1000-1093.2019.05.011
论文

不同升温速率下模块装药慢速烤燃特性的数值模拟

  • 刘静, 余永刚
作者信息 +

Simulation of Slow Cook-off for Modular Charges at Different Heating Rates

  • LIU Jing, YU Yonggang
Author information +
文章历史 +

摘要

为分析模块装药在外界热刺激下的热稳定性,开展了模块装药慢速烤燃特性的研究。建立模块装药慢速烤燃模型,在1.8 K/h、3.6 K/h和 7.2 K/h 3种升温速率下进行数值模拟计算。结果表明:在慢速烤燃条件下,升温速率较低(1.8 K/h、3.6 K/h)时,烤燃响应区域靠近中心传火管;升温速率较高(7.2 K/h)时,烤燃响应区域已不再靠近中心传火管的位置。由此可见,升温速率对模块装药着火时间和烤燃响应区域位置有较大的影响。随着升温速率的提高,着火时间变短,烤燃响应区域向单基药中心移动,烤燃响应区域由一个中心环形区域变成关于中心对称的两个环形区域,升温速率对烤燃响应区域的着火温度影响较小。

Abstract

The slow cook-off characteristics of modular charge at different heating rates are investigated for analyzing the thermal stability of modular charge under external stimulus. A slow cook-off model for the modular charge was established, and the numerical simulation calculations at the heating rates of 1.8 K/h, 3.6 K/h and 7.2 K/h were made. The results show that the ignition area occurs inside the singlebase powder near the central flash tube when the heating rate is low(1.8 K/h and 3.6 K/h )during slow cook-off. When the heating rate is high(7.2 K/h), the ignition area is no longer near the single base powder near the central flash tube. The heating rate has a great effect on the ignition time and the ignition position. As the heating rate increases, the ignition time is shorted, and the ignition area moves toward the center of single base powder. The burning response area changes from a central annular area to two annular areas that are symmetric about the center. The change of heating rate has limited impact on the ignition temperature. Key

关键词

模块装药 / 慢速烤燃 / 升温速率 / 数值模拟

Key words

modularcharge / slowcook-off / heatingrate / numericalsimulation

引用本文

导出引用
刘静, 余永刚. 不同升温速率下模块装药慢速烤燃特性的数值模拟. 兵工学报. 2019, 40(5): 990-995 https://doi.org/10.3969/j.issn.1000-1093.2019.05.011
LIU Jing, YU Yonggang. Simulation of Slow Cook-off for Modular Charges at Different Heating Rates. Acta Armamentarii. 2019, 40(5): 990-995 https://doi.org/10.3969/j.issn.1000-1093.2019.05.011

基金

国家自然科学基金项目(51176076)

参考文献



[1]张为华,陈广南.固体火箭发动机撞击与热安全性分析[M].北京:国防工业出版社,2008:8-15.
ZHANG W H,CHEN G N. Safety analyses for solid rocket motors under insults of impact and heat[M].Beijing:National Defense Industry Press,2008:8-15.(in Chinese)

[2]杨建,王建灵,高赞,等.装药直径对HMX基炸药慢速烤燃性能的影响[J].四川兵工学报, 2015, 36(6):117- 119.
YANG J, WANG J L,GAO Z,et al.Research on charge diameter's influence to SCO character of HMX base explosives[J]. Journal of Sichuan Ordnance, 2015,36 (6):117 -119.(in Chinese)
[3]智小琦,胡双启.炸药装药密度对慢速烤燃响应特性的影响[J].爆炸与冲击, 2013, 33(2):221-224.
ZHI X Q,HU S Q.Influences of charge densities on responses of explosives to slow cook-off[J].Explosion and Shock Waves,2013, 33(2):221-224. (in Chinese)

[4]于永利, 智小琦, 范兴华,等. 自由空间对炸药慢烤响应特性影响的研究[J].科学技术与工程, 2015, 15(5):280-283.
YU Y L,ZHI X Q,FAN X H,et al.The research of free-space influence on response characteristics of explosive on slow cook-off condition[J]. Science Technology and Engineering, 2015, 15(5): 280-283. (in Chinese)
[5]CAROR I, BELLERBY J M. Behavior of hydroxyl-terminated polyether (HTPE) composite rocket propellants in slow cook-off[J]. International Journal of Energetic Materials and Chemical Propulsion, 2008, 7(3):171-185.
[6]陈中娥,唐承志,赵孝彬.固体推进剂的慢速烤燃行为与热分解特性的关系研究[J].含能材料,2005, 13(6):393-396.
CHEN Z E,TANG C Z,ZHAO X B. Relationship between slow cook-off behavior and thermal decomposition characteristics of solid propellant[J].Chinese Journal of Energetic Materials,2005, 13(6): 393-396. (in Chinese)
[7]赵孝彬,李军,程立国,等.固体推进剂慢速烤燃特性的影响因素研究[J].含能材料, 2011, 19(6):669-672.
ZHAO X B,LI J,CHENG L G,et al.Influence factors of slow cook-off characteristic for solid propellant[J].Chinese Journal of Energetic Materials,2011, 19(6): 669-672. (in Chinese)

[8]丁黎,王琼,王江宁,等.高固含量改性双基推进剂的烤燃试验研究[J].固体火箭技术, 2014(6):829-832,837.
DING L,WANG Q,WANG J N,et al.Study of screw extrusion modified double base (MDB) propellant with high solid content by cook-off text[J].Journal of Solid Rocket Technology, 2014(6):829-832,837. (in Chinese)
[9]杨筱,智小琦,杨宝良,等.装药尺寸及结构对HTPE推进剂烤燃特性的影响[J].火炸药学报, 2016, 39(6):84-89.
YANG X,ZHI X Q,YANG B L,et al.Influences of charging size and structure on cook-off characteristics of HTPE propellant[J].Chinese Journal of Explosives & Propellants, 2016, 39(6):84-89. (in Chinese)
[10]李文凤, 余永刚, 叶锐,等.不同升温速率下AP/HTPB底排装置慢速烤燃的数值模拟[J].爆炸与冲击,2017, 37(1):46-52.
LI W F,YU Y G,YE R,et al.Simulation of cook-off for AP/HTPB composition propellant in base bleed unit at different heating rates[J].Explosion and Shock Waves,2017, 37(1):46-52. (in Chinese)
[11]李文凤, 余永刚, 叶锐. 装药尺寸对高氯酸铵/端羟基聚丁二烯底排药烤燃特性的影响[J].兵工学报,2017, 38(8):1532-1540.
LI W F,YU Y G,YE R.Effect of charge size on cook-off characteristics of AP/HTPB base bleed propellant[J].Acta Armamentarii, 2017, 38(8):1532-1540. (in Chinese)

[12]杨后文.复合固体推进剂烤燃特性的实验研究与数值模拟[D].南京:南京理工大学, 2016.
YANG H W.Experimental study and numerical simulation of cook-off characteristic for composite solid propellant[D].Nanjing: Nanjing University of Science and Technology,2016. (in Chinese)
[13]朱一举,丁黎,常海,等.等温量热法研究9/7单基药的热分解行为[J].火工品, 2015(1):38-40.
ZHU Y J, DING L, CHANG H, et al .Study on thermal behavior of 9/7 single-base propellant by isothermal calorimetric method[J]. Initiators & Pyrotechnics,2015(1): 38-40. (in Chinese)
[14]姚二岗, 胡荣祖, 赵凤起,等.用DSC曲线数据估算硝化棉的CnB和表观经验级数自催化分解反应热爆炸临界温升速率[J].火炸药学报, 2013, 36(5):72-76.
YAO E G, HU R Z, ZHAO F Q, et al. Estimation of the critical rate of temperature rise for thermal explosion of CnB and apparent empiric-order autocatalytic decomposing reaction of nitrocellulose from DSC curves[J].Chinese Journal of Explosives & Propellants,2013, 36(5):72-76. (in Chinese)
[15]刘子如. 含能材料热分析[M].北京:国防工业出版社, 2008.
LIU Z R. Thermal analyses for energetic materials[M].Beijing:National Defense Industry Press,2008. (in Chinese)




第40卷第5期
2019年5月兵工学报ACTA
ARMAMENTARIIVol.40No.5May2019

Accesses

Citation

Detail

段落导航
相关文章

/