为提高电磁轨道发射装置的稳定性,提出在电磁发射装置身管上施加预紧压力,利用液压伺服的液压自稳定性来平衡电磁冲击力引起的振动。在发射装置上3个不同位置安装具有抗电磁干扰的压电加速度传感器实时采集轨道的振动信号,应用虚拟仪器技术对比分析轨道振动频率和幅值变化。施加液压伺服预紧后大幅值振动时间明显缩短,并且在不同位置施加液压伺服预紧,发射装置呈现不同的振动特性。试验结果表明,施加液压伺服预紧能够有效缩短轨道的振动持续时间,提高电磁轨道发射装置的稳定性。
Abstract
In order to improve the stability of electromagnetic rail launcher, a pre-load pressure is applied on the barrel of electromagnetic rail launcher, and the hydraulic self-stability of hydraulic servo is used to balance the vibration caused by electromagnetic force. The piezoelectric acceleration sensors with anti-electromagneticinterference are installed at three different positions on the launcher to collect the real-time vibrational signals of rail, and the vibration frequency and amplitude spectrum of the rail are compared and analyzed by using virtual instrument technology. After applying a hydraulic servo pre-load, the time of large amplitude vibration is obviously shortened, and when hydraulic servo preload is applied at different positions, the launcher shows different vibrational characteristics. The test results show that the hydraulic servo pre-load can effectively shorten the vibration duration of rail, furthermore, improving the stability of electromagnetic rail launcher.Key
关键词
电磁发射 /
振动特性 /
液压伺服预紧 /
幅值谱图
{{custom_keyword}} /
Key words
electromagneticlaunch /
vibrationperformance /
hydraulicpre-load /
amplitudespectrum
{{custom_keyword}} /
基金
国家自然科学基金项目(61403333);河北省高等学校科学技术研究项目(ZC2016099)
{{custom_fund}}
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]MCNABI R. Largescale pulsed power opportunities and challenges[J]. IEEE Transactions on Plasma Science, 2014, 42(5):1118-1127.
[2]LIEBFRIED O, BROMMER V, SCHARNHOLZ S, et al. Refurbishment of a 30-MJ-pulsed power supply for pulsed power applications[J]. IEEE Transactions on Plasma Science, 2013, 41(5):1285-1289.
[3]LEHMANNP. Overview of the electric launch activities at the French-German Research Institute of Saint-Louis (ISL)[J]. IEEE Transactions on Magnetics, 2003, 39(1):24-28.
[4]MCNAB I R. Pulsed power for electric guns[J]. IEEE Transactions on Magnetics, 1997, 33(1):453-460.
[5]LI J, LI S, LIU P, et al. Design and testing of a 10-MJ electromagneticlaunch facility[J]. IEEE Transactions on Plasma Science, 2011, 39(4):1187-1191.
[6]张淼, 沈娜, 田慧. 电磁轨道炮发射过程中的分布式脉冲电源系统冲击特性研究[J]. 兵工学报, 2017, 38(5):859-866.
ZHANG M, SHEN N, TIAN H. Analysis of impinging characteristic of distributed power supply system during launching of electromagnetic rail-gun[J]. Acta Armamentarii, 2017, 38(5):859-866.(in Chinese)
[7]李湘平, 鲁军勇, 李玉, 等. 基于解析法的电磁发射弹丸内膛磁场分布特性分析[J]. 兵工学报, 2016, 37(12):2205-2211.
LI X P, LU J Y, LI Y, et al. Analysis of distribution characteristics of in-bore magnetic field of electromagnetically launched projectile based on analytical method[J]. Acta Armamentarii, 2016, 37(12):2205-2211.(in Chinese)
[8]LINQ H, LI B M. Numerical simulation of interior ballistic process of railgun based on the multi-field coupled model[J]. Defence Technology, 2016, 12(2): 101-105.
[9]WATT T J, CLAY C E, BASSETT P M, et al. The effect of surface indentations on gouging in railguns[J]. Wear, 2014, 310(1/2): 41-50.
[10]CHEMERYSV T. Key problems of railgun: new concept for their resolution[J]. Procedia Engineering, 2013, 58:377-383.
[11]张玉燕, 李海龙, 王振春, 等. 大载流高速滑动电接触表面瞬态温度分析[J]. 中国科学:技术科学, 2015, 45(8):834-842.
ZHANG Y Y, LI H L, WANG Z C, et al. Analysis of surface transient temperature on large current carrying high-speed sliding electrical contact[J]. Scientia Sinica:Technological Sciences, 2015, 45(8):834-842.(in Chinese)
[12]周祥, 张袁元. 基于振动分析的机械结构损伤识别方法综述[J]. 机械工程与自动化, 2017(1):216-218.
ZHOU X, ZHANG Y Y. A review of mechanical structure damageidentification methodsbased on vibration analysis[J]. MechanicalEngineering & Automation, 2017(1):216-218.(in Chinese)
[13]MRNIK M, SLAVIACˇU2 J, BOLTEAR M. Vibration fatigue using modal decomposition[J]. Mechanical Systems and Signal Processing, 2018, 98:548-556.
第40卷第1期
2019年1月兵工学报ACTA
ARMAMENTARIIVol.40No.1Jan.2019
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}