Design of Military Wheel-leg Hybrid Quadruped Robot
QU Meng-ke1,2,3, WANG Hong-bo2,3, RONG Yu1
Author information+
(1. College of Urban Construction, Hebei Normal University of Science and Technology, Qinhuangdao 066004, Hebei, China; 2. Parallel Robot and Mechatronic System Laboratory of Hebei Province, Yanshan University, Qinhuangdao 066004, Hebei, China; 3. Key Laboratory of Advanced Forging & Stamping Technology and Science of Ministry of Education, Yanshan University, Qinhuangdao 066004, Hebei, China)
A military wheel-leg hybrid quadruped robot is developed, which can move by the dynamic driving wheels on the road without being damaged at high speed, and can walk by stepping alternately in the ruins with its mechanical legs, and can skate on a flat road by the wheels without dynamic driving. The robot can walk at the maximum speed with the minimum energy consumption. A new type of metamorphic mechanical leg based on the 3-PUPS parallel mechanism is proposed, and its kinematic analysis is done. The effects of dimension parameters of 3-PUPS mechanism on its kinematic and static evaluation indexes are analyzed by defining performance evaluation indexes. A set of the structural parameters of mechanical leg is selected, and an experimental prototype of mechanical leg is developed. A general mechanism model of wheel-leg hybrid quadruped robot is established, and the relationship among robot's parameters and its kinematic and static evaluation indexes is revealed. A set of structural parameters ofwheel-leg hybrid quadruped robot is selected, and the overall design of wheel-leg hybrid quadruped robot is completed. The pose ofmechanical leg experimental prototype is measured using a special robot calibration system. Experimental results show that the maximum error ofmechanical leg motion platform along x axis is 0.041 mm, the maximum error along y axis is 0.040 mm, the maximum error along z axis is 0.040 mm, the maximum error of the attitude angle around z axis is 0.041°, the maximum error of attitude angle around y axis is 0.043°, and the maximum error of attitude angle around x axis is 0.045°. The experimental prototype of mechanical leg meets the design requirements.Key
QU Meng-ke, WANG Hong-bo, RONG Yu.
Design of Military Wheel-leg Hybrid Quadruped Robot. Acta Armamentarii. 2018, 39(4): 787-797 https://doi.org/10.3969/j.issn.1000-1093.2018.04.019
[1]高峰, 郭为忠. 中国机器人的发展战略思考[J]. 机械工程学报, 2016, 52(7): 1-5. GAO Feng, GUO Wei-zhong. Thinking of the development strategy of robots in China[J]. Journal of Mechanical Engineering, 2016, 52(7): 1-5. (in Chinese)
[2]熊蓉. 仿生腿足式机器人的发展[J]. 机器人技术与应用, 2017(2): 29-36. XIONG Rong. Development of bionic legged robot[J]. Robot Technique and Application, 2017(2): 29-36. (in Chinese)
[3]王雁东, 唐昭, 戴建生. 连杆铰接轮腿式机器人的运动学与步态分析[J]. 机械工程学报, 2017, 49(6): 89-97. WANG Yan-dong, TANG Zhao, DAI Jian-sheng. Kinematics and gait analysis of a linkage-jointed wheel-legged robot[J]. Journal of Mechanical Engineering, 2017, 49(6): 89-97. (in Chinese) [4]EndoG, Hirose S. Study on roller-walker (multimode steering control and self-contained locomotion)[C]∥ Proceedings of IEEE International Conference on Robotics and Automation. San Francisco, CA, US:IEEE, 2000: 2808-2814. [5]姚道金, 王杨, 姚渊. 基于质心运动状态的双足机器人欠驱动步行稳定控制[J]. 机器人, 2017, 39(3): 324-332. YAO Dao-jin, WANG Yang, YAO Yuan. Stable control of under actuated bipedal walking based on motion state of center-of-mass[J]. Robot, 2017, 39(3): 324-332. (in Chinese) [6]陈勇, 王昌明, 包建东. 新型爬壁机器人磁吸附单元优化设计[J]. 兵工学报, 2012, 33(12): 1539-1544. CHEN Yong, WANG Chang-ming, BAO Jian-dong. Optimization of a novel magnetic adsorption unit for wall-climbing robot[J]. Acta Armamentarii, 2012, 33(12): 1539-1544.(in Chinese) [7]李研彪, 李景敏, 计时鸣. 一种3自由度并联拟人机械腿的动力学建模及伺服电机峰值力矩预估[J]. 兵工学报, 2014, 35(11):1929-1936. LI Yan-biao, LI Jing-min, JI Shi-ming. Dynamic modeling and peak torque prediction of servo motor for a 3-DOF parallel humanoid mechanical leg[J]. Acta Armamentarii, 2014, 35(11): 1929-1936. (in Chinese) [8]QuM K, Wang H B, Rong Y. Statics performance evaluating and optimal design of a parallel mechanical leg of the wheel-leg hybrid quadruped robot[J]. ICIC Express Letters, Part B: Applications, 2017, 8(7): 1041-1049. [9]张豫南, 黄涛, 张舒阳. 一种履带式全方位移动平台转向滑移功率比分析[J]. 兵工学报, 2015, 36(8): 1562-1568. ZHANG Yu-nan, HUANG Tao, ZHANG Shu-yang. Analysis about steering slip power ratio of a tracked omnidirectional mobile platform [J]. Acta Armamentarii, 2015, 36(8): 1562-1568. (in Chinese) [10]孙扬, 陈慧岩. 无人地面车辆测评体系研究[J]. 兵工学报, 2015, 36(6): 978-986. SUN Yang, CHEN Hui-yan. Research on test and evaluation of unmanned ground vehicles[J]. Acta Armamentarii, 2015, 36(6):978-986. (in Chinese)
[11]张千伟, 张龙. 仿生四足机器人结构设计与运动学分析[J]. 兵工自动化, 2017, 36(5): 73-76. ZHANG Qian-wei, ZHANG Long. Structure design and kinematics analysis of bionic quadruped robot[J]. Ordnance Industry Automation, 2017, 36(5): 73-76. (in Chinese)
[12]刘呈则, 严智, 邓景珊. 核电站应急机器人研究现状与关键技术分析[J]. 核科学与工程, 2013, 33(1): 98-105. LIU Cheng-ze, YAN Zhi, DENG Jing-shan. Study on accident response robot for nuclear power plant and analysis of key technologies[J]. Nuclear Science and Engineering, 2013, 33(1): 98-105. (in Chinese) [13]刘波, 王欣, 吴王锁. 机器人在核与辐射事故应急中的应用展望[J]. 工业安全与环保, 2015, 41(1): 62-64. LIU Bo, WANG Xin, WU Wang-suo. The application prospect of robot in the nuclear and radiation emergency [J]. Industrial Safety and Environmental Protection, 2015, 41(1): 62-64. (in Chinese) [14]VolpeR, Balaram J, Ohm T. Rocky 7: a next generation Mars rover prototype[J]. Advanced Robotics, 1997, 11(4): 341-358. [15]KemurdjianA L. Planet rover as an object of the engineering design work[C]∥Proceedings of the 1998 IEEE International Conference on Robotics & Automation. Leuven, Belgium:IEEE, 1998: 140-145. [16]CollinsC. Stiffness modeling and force distribution for the all-terrain hex-limbed extra-terrestrial explorer (ATHLETE) [C]∥Proceedings of the ASME 2007 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference. Las Vegas, NV, US: ASME, 2007: 1-9. [17]SmithJ A, Sharf I, Trentini M. PAW: a hybrid wheeled-leg robot, ResearchReports No.30[R]. Espoo, Finland:Centre for IntelligentMachines, McGill University, 2007: 140-145. [18]徐坤, 郑羿, 丁希仑. 六轮腿式机器人结构设计与运动模式分析[J]. 北京航空航天大学学报, 2016, 42(1): 59-71. XU Kun, ZHENG Yi, DING Xi-lun . Structure design and motion mode analysis of a six wheel-legged robot[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(1):59-71. (in Chinese) [19]DingX L, Zheng Y, Xu K. Wheel-legged hexapod robots: a multifunctional mobile manipulating platform[J]. Chinese Journal of Mechanical Engineering, 2017, 30(1): 3-6. [20]WangP F, Huang B, Sun L N. Walking research on multi-motion mode quadruped bionic robot based on moving ZMP[C]∥Proceedings of the IEEE International Conference on Mechatronics & Automation Niagara Falls. Toronto, Canada: IEEE, 2005: 1935-1940. [21]HiroseS, Endo G. Study on roller-walker (multi-mode steering control and self-contained loco-motion)[C]∥Proceedings of the IEEE International Conference on Robotics and Automation. San Francisco, CA, US: IEEE, 2000: 2808-2813. [22]潘阳. P-P结构六足机器人性能设计与控制试验研究[D]. 上海: 上海交通大学, 2014: 29-55. PAN Yang. Performance design and control experiment of a novel hexapod robot with P-P structure[D]. Shanghai: Shanghai Jiao Tong University, 2014: 29-55. (in Chinese)
[23]荣誉. 基于并联机械腿的六足机器人分析与设计[D].秦皇岛: 燕山大学, 2015: 17-88. RONG Yu. Analysis and design for hexapod robots with parallel mechanical legs[D]. Qinhuangdao: Yanshan University, 2015: 17-88. (in Chinese)
[24]荣誉, 金振林. 五自由度并联机械腿静力学性能评价与优化设计[J]. 光学精密工程, 2012, 20(6): 1233-1242. RONG Yu, JIN Zhen-lin. Statics performance evaluating and optimal design of 5-DOF parallel mechanical leg[J]. Optics and Precision Engineering, 2012, 20(6): 1233-1242. (in Chinese) [25]荣誉, 金振林, 曲梦可. 六足步行机器人的并联机械腿设计[J]. 光学精密工程, 2012, 20(7): 1532-1541. RONG Yu, JIN Zhen-lin, QU Meng-ke. The design of a parallel mechanical leg of the six-legged robot[J]. Optics and Precision Engineering, 2012, 20(7): 1532-1541. (in Chinese) [26]荣誉, 金振林. 3-DOF并联机械腿动力学建模与伺服电机峰值预估[J]. 光学精密工程, 2012, 20(9): 1974-1983. RONG Yu, JIN Zhen-lin. Dynamic modeling and peak prediction of servo motor for 3-DOF parallel mechanical leg[J]. Optics and Precision Engineering, 2012, 20(9): 1974-1983. (in Chinese) [27]荣誉, 金振林, 曲梦可. 三自由度并联机械腿静力学分析与优化[J]. 农业工程学报, 2012, 28(20): 41-49. RONG Yu, JIN Zhen-lin, QU Meng-ke. Statics analysis and optimal design of 3-DOF parallel mechanical leg[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(20):41-49. (in Chinese) [28]田兴华, 高峰, 陈先宝, 等. 四足仿生机器人混联腿构型设计及比较[J]. 机械工程学报, 2013, 49(6):81-88. TIAN Xing-hua, GAO Feng, CHEN Xian-bao, et al. Mechanism design and comparison for quadruped robot with parallel-serial leg[J]. Journal of Mechanical Engineering, 2013, 49(6): 81-88. (in Chinese) [29]荣誉, 刘双勇, 韩勇. 六足制孔机器人三自由度并联机械腿的误差模型及验证[J]. 农业工程学报, 2016, 32(18): 18-25. RONG Yu, LIU Shuang-yong, HAN Yong. Error model and verification of three degrees of freedom parallel mechanical leg on hexapod drilling robot[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(18): 18-25. (in Chinese) [30]王洪波, 齐政彦, 胡正伟, 等. 并联腿机构在四足/两足可重组步行机器人中的应用[J].机械工程学报, 2009, 45(8): 24-30. WANG Hong-bo, QI Zheng-yan, HU Zheng-wei, et al. Application of parallel leg mechanisms in quadruped/biped reconfigurable walking robot[J]. Journal of Mechanical Engineering, 2009, 45(8): 24-30. (in Chinese)