二甲醚与氢气稀混合气在中低温条件下的着火延迟特性

许永红;童亮;石智成;张红光

兵工学报 ›› 2018, Vol. 39 ›› Issue (4) : 655-663.

兵工学报 ›› 2018, Vol. 39 ›› Issue (4) : 655-663. DOI: 10.3969/j.issn.1000-1093.2018.04.004
论文

二甲醚与氢气稀混合气在中低温条件下的着火延迟特性

  • 许永红1, 童亮1, 石智成2,3, 张红光2,3
作者信息 +

Ignition Delay Characteristics of DME/H2 Lean Mixtures at Low-to-medium Temperature

  • XU Yong-hong1, TONG Liang1, SHI Zhi-cheng2,3, ZHANG Hong-guang2,3
Author information +
文章历史 +

摘要

为了研究二甲醚与氢气稀混合气在中低温条件下的着火延迟特性,利用快速压缩机实验台架测量了二甲醚与氢气稀混合气在上止点温度628~858 K,上止点压力12~22 bar,当量比0.30~1.00,掺氢比0%~85%条件下的着火延迟期。同时,采用有限元分析软件Chemkin-Pro对着火过程进行了模拟计算。实验和模拟研究结果表明:氢气的添加使得着火延迟期呈非线性增加,且在掺氢比超过60%和较低的上止点压力下氢气对着火的抑制效果更加明显;二甲醚与氢气稀混合气在较低当量比0.30下的燃烧与放热出现低温、高温第1阶段和高温第2阶段3个阶段,且随着掺氢比的增加,三阶段的燃烧与放热现象弱化。化学动力学分析表明:二甲醚主要在低温、高温第1阶段反 应过程中消耗,氢气主要在高温第2阶段反应中消耗。

Abstract

To investigate the ignition delay characteristics of DME/H2 mixtures at low-to-medium temperature, ignition delay times of lean DME/H2 mixtures (hydrogen mole fraction in the fuel mixtures of 0%, 50%, 60%, 70%, and 85%) were measured using a rapid compression machine in the compressed temperature range of 628-858 K at compression pressures of 12-22 bars, the equivalence ratios of 0.30- 1.00, and the hydrogen blend ratio of 0%-85%. A kinetics model is built to simulate the ignition process using finite element software Chemkin-Pro. The results show that the addition of H2 to DME mixtures leads to a nonlinear increase in ignition delay time. The inhibition effect of H2 addition is found to be more pronounced at lower compression pressure with H2 mole fraction of more than 60%. It is also observed that lean DME/H2 mixtures show three stage heat release behaviors at lower equivalence ratio of 0.30, i.e.,the first stage of low temperature heat release (LTHR) and the second stage of high temperature heat release (HTHR), and the third stage of high temperature heat release. Meanwhile, the three-stage heat release behavior becomes weak as the H2 mole fraction increases. Further chemical kinetic analysis indicates that DME is mainly consumed during LTHR and the first stage of HTHR whereas H2 is mainly consumed during the second stage of HTHR. Key

关键词

快速压缩机 / 着火延迟期 / 二甲醚 / 氢气 / 三阶段放热

Key words

rapidcompressionmachine / ignitiondelaytime / dimethylether / hydrogen / three-stageheatrelease

引用本文

导出引用
许永红, 童亮, 石智成, 张红光. 二甲醚与氢气稀混合气在中低温条件下的着火延迟特性. 兵工学报. 2018, 39(4): 655-663 https://doi.org/10.3969/j.issn.1000-1093.2018.04.004
XU Yong-hong, TONG Liang, SHI Zhi-cheng, ZHANG Hong-guang. Ignition Delay Characteristics of DME/H2 Lean Mixtures at Low-to-medium Temperature. Acta Armamentarii. 2018, 39(4): 655-663 https://doi.org/10.3969/j.issn.1000-1093.2018.04.004

基金

国家自然科学基金项目(51376011);北京市自然科学基金面上项目(3152005);国家自然科学基金委员会与英国皇家学会合作 交流项目(51611130193)

参考文献



[1]EppingK, Aceves S, Bechtold R, et al. The potential of HCCI combustion for high efficiency and low emissions[C]∥Proceedings of SAE Powertrain & Fluid Systems Conference and Exhibition. San Diego, CA,US:SAE,2002.
[2]Ibrahim M M, Ramesh A. Investigations on the effects of intake temperature and charge dilution in a hydrogen fueled HCCI engine[J].International Journal of Hydrogen Energy,2014,39(26): 14097-14108.
[3]Hairuddin A A, Yusaf T, Wandel A P.A review of hydrogen and natural gas addition in diesel HCCI engines[J]. Renewable and Sustainable Energy Reviews, 2014, 32(5): 739-761.
[4]Park S H, Lee C S. Applicability of dimethyl ether (DME) in a compression ignition engine as an alternative fuel [J]. Energy Conversion and Management, 2014, 86: 848-863.
[5]Verhelst S, Wallner T. Hydrogen-fueled internal combustion engines[J]. Progress in Energy and Combustion Science, 2009, 35(6):490-527.
[6]Shudo T, Yamada H. Hydrogen as an ignition-controlling agent for HCCI combustion engine by suppressing the low temperature oxidation[J]. International Journal of Hydrogen Energy, 2007, 32(14):3066-3072.
[7]梁晨, 纪常伟, 孔令凯,等. 二甲醚-氢气混合燃料HCCI燃烧与排放试验[J].农业机械学报, 2011, 42(3): 15-20.
LIANG Chen, JI Chang-wei, KONG Ling-kai, et al.Combustion and emissions performance of a HCCI engine fueled with DME and hydrogen blends[J]. Transactions of the Chinese Society for Agricultural, 2011, 42(3): 15-20.(in Chinese)
[8]Pan L, Hu E J, Zhang J X, et al. Experimental and kinetic study on ignition delay times of DME/H2/O2/Ar mixtures[J]. Combustion and Flame, 2014, 161(3): 735-747.
[9]Pan L, Hu E J, Deng F Q, et al. Effect of pressure and equivalence ratio on the ignition characteristics of dimethyl ether-hydrogen mixtures[J]. International Journal of Hydrogen Energy, 2014, 39(33): 19212-19223.

[10]张红光, 石智成, 高翔,等. 二甲醚在低到中温的着火延迟特性[J]. 化工学报, 2017, 68(5):2140-2147.
ZHANG Hong-guang, SHI Zhi-cheng, GAO Xiang,et al. Ignition delay characteristics of dimethyl ether under low-to-medium temperature ranges[J]. CIESC Journal, 2017, 68(5): 2140-2147. (in Chinese)
[11]HuE J, Chen Y Z, Cheng Y, et al. Study on the effect of hydrogen addition to dimethyl ether homogeneous charge compression ignition combustion engine[J]. Journal of Renewable and Sustainable Energy, 2015, 7(6): 063121-1- 063121-10).
[12]张红光, 刘昊, 李嘉辰, 等. 快速压缩机试验台架设计与性能试验[J]. 农业机械学报, 2015, 46(4): 289-295.
ZHANG Hong-guang, LIU Hao, LI Jia-chen, et al. Development and performance of rapid compression machine test bench[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(4): 289-295. (in Chinese)
[13]Mittal G, Sung C J. A rapid compression machine for chemical kinetics studies at elevated pressures and temperatures[J]. Combustion Science and Technology, 2007, 179 (3): 497-530.
[14]Brett L, Macnamara J, Musch, P, et al. Simulation of methane autoignition in a rapid compression machine with creviced pistons[J]. Combustion and Flame, 2001, 124(1): 326-329.
[15]Morley C. Gaseq Version 0.76[EB/OL]. [2017-08-04]. http:∥www.gaseq.co.uk.
[16]DiH S, He X, Zhang P, et al. Effects of buffer gas composition on low temperture ignition of iso-octane and n-heptane[J]. Combust Flame, 2014, 161(10): 2531-2538.
[17]He X, Donovan M T, Zigler B T, et al. An experimental and modeling study of iso-octane ignition delay times under homogeneous charge compression ignition conditions[J]. Combustion and Flame, 2005, 142(3): 266-275.
[18]Mittal G, Chaos M, Sung C J, et al. Dimethyl ether autoignition in a rapid compression machine: experiments and chemical kineticmodeling[J]. Fuel Processing Technology, 2008, 89(12): 1244-1254.
[19]张红光, 石智成, 卢海涛, 等. 基于快速压缩机的甲烷着火延迟期的研究[J]. 北京工业大学学报, 2016, 42(4): 577-584.
ZHANG Hong-guang, SHI Zhi-cheng, LU Hai-tao, et al. Study of ignition delay time of methane based on a rapid compression machine[J]. Journal of Beijing University of Technology, 2016, 42 (4): 577-584.(in Chinese)
[20]Burke U, Somers K P, O'Toole P, et al. An ignition delay and kinetic modeling study of methane, dimethyl ether, and their mixtures at high pressures[J]. Combustion and Flame, 2015, 162(2): 315-330.
[21]Kéromnès A, Metcalfe W K, Heufer K A, et al. An experimental and detailed chemical kinetic modeling study of hydrogen and syngas mixture oxidation at elevated pressures[J]. Combust and Flame, 2013, 160(6): 995-1011.
[22]Sante R D. Measurements of the auto-ignition of n-heptane/toluene mixture using a rapid compression machine[J]. Combustion and Flame, 2012, 159(1): 55-63.
[23]郑朝蕾,李善良.二甲醚重整气对二甲醚均质压燃影响的数值模拟[J]. 内燃机学报, 2013, 31(4):337-342.
ZHENG Chao-lei, LI Shan-liang. Numerical simulation on the effect of DME-reformed gas on dimethyl ether homogeneous compression ignition[J]. Transactions of CSICE, 2013, 31(4): 337-342. (in Chinese)
[24]Mittal G, Sung C J, Yetter R A. Autoignition of H2/CO at elevated pressures in a rapid compression machine[J]. International Journal of Chemical Kinetics, 2006, 38(8): 516-529.
[25]Shi Z C, Zhang H G, Lu H T, et al. Autoignition of DME/H2 mixtures in a rapid compression machine under low-to-medium temperature ranges[J]. Fuel, 2017, 194: 50-62.





第39卷
第4期2018年4月兵工学报ACTA
ARMAMENTARIIVol.39No.4Apr.2018

414

Accesses

0

Citation

Detail

段落导航
相关文章

/