岩石动力学计算中的网格效应及机理研究

王海兵;张海波;田宙;欧卓成;周刚

兵工学报 ›› 2016, Vol. 37 ›› Issue (10) : 1828-1836.

兵工学报 ›› 2016, Vol. 37 ›› Issue (10) : 1828-1836. DOI: 10.3969/j.issn.1000-1093.2016.10.009
论文

岩石动力学计算中的网格效应及机理研究

  • 王海兵1,2, 张海波2, 田宙2, 欧卓成1, 周刚2
作者信息 +

Mesh Size Effect and Its Mechanism Research in Numerical Calculation of Rock Dynamics

  • WANG Hai-bing1,2, ZHANG Hai-bo2, TIAN Zhou2,OU Zhuo-cheng1, ZHOU Gang2
Author information +
文章历史 +

摘要

岩石动力学计算中,网格尺寸对数值计算结果的可靠性有重要影响。采用数值实验的方法,对岩石爆炸应力波传播数值计算中的网格尺寸效应及其敏感性机理进行了研究。研究结果表明:合适的网格尺寸要根据载荷特征和波传播介质的属性来决定;当一个载荷波长内的网格数达到16个以上时,计算得到的各物理量的波形和峰值基本趋于稳定;计算还给出了各物理量与网格密度的关系;随着爆心距的增加,物理量对网格尺寸的敏感性降低,其机理是载荷中的高频成分逐渐衰减、载荷的波长变大,模型所需的网格尺寸变大;时间步长系数对计算结果的影响也非常明显,当时间步长系数取0.05时,位移稳态值趋于收敛值。

Abstract

In rock dynamics calculation, the mesh size has an important influence on the reliability of numerically calculated results. A numerical experimental method is used to research the mesh size effect and its sensitivity mechanism in the numerical simulation of propagation of explosion stress wave in rock. The research results show that a proper mesh size should be specified both by the load characteristics and the property of wave propagation medium. When the number of mesh is up to 16 within one load wavelength, the waveforms and peak values of all calculated physical quantities trend to be stable.The relationships between the values of physical quantities and the different mesh densities are also presented. With the increase in distance from explosive source, the sensitivity of physical quantities to mesh size decreases. This is because high-frequency components attenuate gradually, and the wavelength of load becomes longer with the increase in distance from explosive source. The time step coefficient also has a great influence on computational results. When the time step coefficient equals to 0.05, the stable value of displacement tends to converge.

关键词

兵器科学与技术 / 数值计算 / 网格尺寸 / 时间步长 / 敏感性机理

Key words

ordnance science and technology / numerical calculation / mesh size / time step / sensitivity mechanism

引用本文

导出引用
王海兵, 张海波, 田宙, 欧卓成, 周刚. 岩石动力学计算中的网格效应及机理研究. 兵工学报. 2016, 37(10): 1828-1836 https://doi.org/10.3969/j.issn.1000-1093.2016.10.009
WANG Hai-bing, ZHANG Hai-bo, TIAN Zhou,OU Zhuo-cheng, ZHOU Gang. Mesh Size Effect and Its Mechanism Research in Numerical Calculation of Rock Dynamics. Acta Armamentarii. 2016, 37(10): 1828-1836 https://doi.org/10.3969/j.issn.1000-1093.2016.10.009

基金

国家自然科学基金项目(91330205)

参考文献

[1] 张雄, 王天舒. 计算动力学[M]. 北京: 清华大学出版社, 2007.
ZHANG Xiong, WANG Tian-shu. Computational dynamics[M]. Beijing: Tsinghua University Press, 2007. (in Chinese)
[2] 陆金甫, 关治. 偏微分方程数值解法[M]. 北京:清华大学出版社, 2004.
LU Jin-fu, GUAN Zhi. Numerical solution of partial differential equation[M]. Beijing: Tsinghua University Press, 2004. (in Chinese)
[3] 李顺波, 东兆星, 齐燕军, 等. 爆炸冲击波在不同介质中传播衰减规律的数值模拟[J]. 振动与冲击,2009, 28(7):115-117.
LI Shun-bo, DONG Zhao-xing, QI Yan-jun, et al. Numerical simulation for spread decay of blasting shock wave in different media[J]. Journal of Vibration and Shock, 2009, 28(7):115-117.(in Chinese)
[4] 胡八一, 柏劲松, 刘大敏, 等. 爆炸容器的工程设计方法及其应用[J]. 压力容器, 2000, 17(2):39-41.
HU Ba-yi, BAI Jin-song, LIU Da-min, et al. The engineering design method of explosion-containment vessel and its application[J]. Pressure Vessel Technology, 2000, 17(2): 39-41. (in Chinese)
[5] Chapman T C. Blast wave simulation using AUTODYN 2D: a parametric study[J]. International Journal of Impact Engineering, 1995, 16(5): 777-787.
[6] 胡八一, 李平, 张振宇, 等.爆炸塔内壁特征点的反射压力数值模拟[J]. 计算力学学报, 2009, 26(4): 573-578.
HU Ba-yi, LI Ping, ZHANG Zhen-yu, et al. Numerical simulation of characteristic points reflective pressure on the inner surface of the explosion chamber[J]. Chinese Journal of Computational Mechanics, 2009, 26(4):573-578.(in Chinese)
[7] 杨鑫, 石少卿, 程鹏飞, 等. 爆炸冲击波在空气中传播规律的经验公式对比及数值模拟[J]. 四川建筑, 2007, 27(5): 71-73.
YANG Xin, SHI Shao-qing, CHENG Peng-fei, et al. Numerical simulation and comparison with empirical formula on the law of shock wave generated by TNT explosions in air[J]. Sichuan Architecture, 2007, 27(5): 71-73.(in Chinese)
[8] 雷鸣, 田宙, 张海波, 等. 网格疏密对空中化爆自由场参数计算结果的影响[R]. 西安:西北核技术研究所, 2005.
LEI Ming, TIAN Zhou, ZHANG Hai-bo, et al. Study on the effects of mesh density to the results of freefield parameters about explosion in air[R]. Xi'an:Northwest Institute of Nuclear Technology, 2005.(in Chinese)
[9] 姚成宝, 王宏亮, 张柏华, 等. TNT空中爆炸冲击波传播数值模拟及数值影响因素分析[J]. 现代应用物理, 2014, 5(1): 39-44.
YAO Cheng-bao, WANG Hong-liang, ZHANG Bai-hua, et al. Numerical simulation of shock wave generated by TNT explosions in infinite air[J]. Modern Applied Physics, 2014, 5(1): 39-44.(in Chinese)
[10] 王海兵, 曹渊, 张海波, 等. 5kg TNT当量爆炸容器力学响应数值模拟及参数敏感性分析[C]∥第二届全国爆炸容器专题研讨会论文集. 西安:西北核技术研究所, 2013.
WANG Hai-bing, CAO Yuan, ZHANG Hai-bo, et al. Numerical simulation on dynamic response of 5kg TNT equivalent explosion container and parameters sensitivity analysis[C]∥Proceedings of the Second National Symposium on Explosive Containers. Xi'an: Northwest Institute of Nuclear Technology, 2013. (in Chinese)
[11] Shi Y C, Li Z X, Hao H. Mesh size effect in numerical simulation of blast wave propagation and interaction with structures[J]. Transactions of Tianjin University, 2008, 14(6): 396-402.
[12] 梁正召, 王述红, 唐春安, 等. 非均匀性岩石破裂的网格效应[J]. 岩石力学与工程学报, 2005, 24(增刊1):5108-5112.
LIANG Zheng-zhao, WANG Shu-hong, TANG Chun-an, et al. Mesh effects on failure processes of heterogeneous rocks[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(S1): 5108-5112.(in Chinese)
[13] 崔焕平, 崔燕平, 王宗敏. 混凝土非线性有限元分析中的网格尺寸效应[J]. 混凝土, 2007(6): 27-29.
CUI Huan-ping, CUI Yan-ping, WANG Zong-min. Mesh size effect in nonlinear finite element analysis of concrete[J]. Concrete, 2007(6): 27-29.(in Chinese)
[14] 门建兵, 隋树元, 蒋建伟, 等. 网格对混凝土侵彻数值模拟的影响[J]. 北京理工大学学报, 2005, 25(8):659-662.
MEN Jian-bing, SUI Shu-yuan, JIANG Jian-wei,et al. Mesh dependency for numerical simulation of concrete penetration[J]. Transactions of Beijing Institute of Technology, 2005, 25(8):659-662.(in Chinese)
[15] Shayanfar M A, KheyroddinA, Mirza M S. Element size effects in nonlinear analysis of reinforced concrete members[J]. Computers and Structures, 1997, 62(2): 339-352.
[16] 张社荣, 李宏璧, 王高辉, 等. 空中和水下爆炸冲击波数值模拟的网格尺寸效应对比分析[J]. 水利学报, 2015, 46(3): 298-306.
ZHANG She-rong, LI Hong-bi, WANG Gao-hui, et al. Comparative analysis of mesh size effects on numerical simulation of shock wave in air blast and underwater explosion[J]. Journal of Hydraulic Engineering, 2015, 46(3):298-306.(in Chinese)
[17] Hallquist J O. LS-DYNA theory manual[M]. Livermore, CA: Livermore Software Technology Corporation, 2006.

578

Accesses

0

Citation

Detail

段落导航
相关文章

/