针对弹道导弹防御系统,研究概率意义下如何根据高层战略防御指标设计和部署拦截方案。在Bernoulli实验模型基础上,将拦截弹数量和防御指标进行关联,并进一步分析系统广义跟踪能力以及拦截弹单发毁伤概率对所需拦截弹数量的影响。在此基础上采用齐射拦截方式和连续发射方式,讨论防御指标、目标数量、目标威胁比率等因素对拦截弹消耗情况的影响。针对分层防御将各层拦截方案的设计建模为最优化问题,在保证防御指标的情况下,通过优化各层目标发射拦截弹的数量,使得平均每目标消耗的拦截弹数量最少,从而达到整体作战效能最优。
Abstract
How to design and deploy the interception schemes to meet the specific high-level defense objective is discussed. A correlation between defense objective and the number of interceptors is established based on Bernoulli trial model, and the effects of system generalized tracking ability and single-shot kill probability on the number of interceptors are analyzed as well. the factors, such as high-level defense objective, target number and single-shot kill probability, that affect consumption of interceptors at the modes of salvo fire and string firing are discussed. At the premise of defense objective, the interceptor allocation in a layered defense is modeled as an optimization problem. The average number of consumed interceptors can be minimized by optimizing the quantity of interceptors against the targets in each defense layer.
关键词
系统评估与可行性分析 /
弹道导弹防御系统 /
Bernoulli模型 /
拦截
{{custom_keyword}} /
Key words
system assessment and feasibility analysis /
ballistic missile defense system /
Bernoulli mo- del /
interception
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Departmentof Defense. Ballistic missile defense review report[R]. Washington, DC: Department of Defense, 2012.
[2] ObamaB. National security strategy of the United States (2010)[R]. Washington, DC: The White House, 2010:1-51.
[3] 符俊, 蔡洪, 张士峰, 等. 航天器远程最优拦截方法研究[J]. 固体火箭技术, 2011, 34(6): 682-686.
FU Jun,CAI Hong,ZHANG Shi-feng, et al. Research on spacecraft long-range optimal interception[J]. Journal of Solid Rocket Technology,2011, 34(6): 682-686. (in Chinese)
[4] SuL, He J H, Wang J Q. Assessment for effectiveness of missile-gun integrated weapon system based on FSKA model[C]∥International Conference on Electric Information and Control Engineering.Wuhan, China: IEEE, 2011: 191-195.
[5] LapeN J. Measuring the effectiveness of the conus air and missile defense C2 system[R]. New York: United States Military Academy, West Point, 2011:1-80.
[6] 王成思, 刘明阳, 宋晋敏. 末段反导武器配系部署规划研究[J]. 现代防御技术, 2015, 43(6):87-92.
WANG Cheng-si, LIU Ming-yang, SONG Jin-min. Optimal deploy of terminal segment missile defense weapon[J].Modern Defence Technology, 2015, 43(6):87-92.(in Chinese)
[7] LarsonE V,Kent G A. A new methodology for assessing multilayer missile defense options[R]. Santa Monica: RAND, 1994:1-66.
[8] EnderT, Leurck R F, Weaver B, et al. Systems-of-systems analysis of ballistic missile defense architecture effectiveness through surrogate modeling and simulation [J]. IEEE Systems Journal, 2010, 4(2): 156-166
[9] WilkeningD A. A simple model for calculating ballistic missile defense effectiveness [J]. Science & Global Security, 2000, 8(2):183-215.
[10] 高恩宇, 刘晓坤. 弹道导弹防御系统拦截概率的简化模型[J]. 导弹与航天运载技术, 2013 (3): 35-38.
GAO En-yu, LIU Xiao-kun. Simplified model for intercepting probability of ballistic missile defense system[J].Missiles and Space Vehicles, 2013(3): 35-38. (in Chinese)
[11] 徐品高. 点防空导弹武器系统拦截方案与火力分配[J]. 战术导弹技术, 1993(1):7-17.
XU Pin-gao. Interceptor mechanism and firepower assignment for point-defense missile system [J]. Tactical Missile Technology, 1993(1): 7-17. (in Chinese)
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}