基于光线投射的电磁态势实时可视化

高颖;陈旭;周士军;郭淑霞

兵工学报 ›› 2015, Vol. 36 ›› Issue (12) : 2306-2314.

兵工学报 ›› 2015, Vol. 36 ›› Issue (12) : 2306-2314. DOI: 10.3969/j.issn.1000-1093.2015.12.013
论文

基于光线投射的电磁态势实时可视化

  • 高颖1, 陈旭1, 周士军2, 郭淑霞2
作者信息 +

Real-time Visualization of Electromagnetic Situation with Graphics Processing Unit Based on Ray-casting Algorithm

  • GAO Ying1, CHEN Xu1, ZHOU Shi-jun2, GUO Shu-xia2
Author information +
文章历史 +

摘要

战场电磁环境态势具有复杂、多维、时变特性,研究战场电磁态势实时可视化技术,对于作战指挥员了解战场态势,作出科学指挥、决策意义重大。目前,表征战场电磁态势的数学模型并不完善,以场强为例,建立了多辐射源空间场强合成的数学模型,为电磁态势三维体数据场的构建提供数据来源;战场态势的复杂性,使得与体数据场相关的数学模型也相对复杂,传统基于中央处理器(CPU)的实现方法无法达到实时解算的要求,鉴于此,提出了基于通用计算图形处理器(GPGPU)的体数据场加速生成技术,实验结果表明该技术能够满足实时可视化的需求;设计了一种体绘制传递函数,并利用基于图形处理器(GPU)的光线投射算法,实现了电磁态势实时可视化。

Abstract

The battlefield electromagnetic situation has the characteristics of complexity, multidimensions and time-varying. Real-time visualization of battlefield electromagnetic situation is significant for commanders to make scientific decisions. Currently, the battlefield electromagnetic data models are not perfect. A mathematic model of the field strength of multiple radiation resources is established by taking the field strength for example, which is used to provide the data sources for constructing 3D volume data field of the battlefield electromagnetic situation. The traditional central processing unit (CPU)-based algorithm cannot meet the requirement of real-time solution because of the complexity of mathematical models related to the volume data field. A volume data field accelerated generation technique based on general purpose graphics processing unit (GPGPU) is proposed. The experimental results show that the proposed technique can meet the requirement of real-time visualization compared to the traditional algorithm. A transfer function is designed to accomplish the visualization of electromagnetic situation based on GPU ray-casting algorithm.

关键词

兵器科学与技术 / 电磁态势 / 数据场建模 / 通用计算图形处理器 / 光线投射算法 / 体可视化

Key words

ordnance science and technology / electromagnetic situation / data field modeling / general purpose graphics processing unit / ray-casting algorithm / volume visualization

引用本文

导出引用
高颖, 陈旭, 周士军, 郭淑霞. 基于光线投射的电磁态势实时可视化. 兵工学报. 2015, 36(12): 2306-2314 https://doi.org/10.3969/j.issn.1000-1093.2015.12.013
GAO Ying, CHEN Xu, ZHOU Shi-jun, GUO Shu-xia. Real-time Visualization of Electromagnetic Situation with Graphics Processing Unit Based on Ray-casting Algorithm. Acta Armamentarii. 2015, 36(12): 2306-2314 https://doi.org/10.3969/j.issn.1000-1093.2015.12.013

基金

国家自然科学基金项目(61571368); 国防技术基础科研项目(2014年)

参考文献

[1] MarcL. Display of surfaces from volume data[J]. IEEE Computer Graphics & Applications,1988, 8(3): 29-37.
[2] 杨玉林, 郭忠伟, 金峰. 地形影响条件下雷达电磁波三维可视化 实现[J]. 兵工自动化, 2014, 33(6): 1-4.
YANG Yu-lin,GUO Zhong-wei,JIN Feng. 3D visualization implementation to radar electromagnetic wave under influence of topography[J]. Ordnance Industry Automation, 2014, 33(6): 1-4.(in Chinese)
[3] 郭淑霞, 周士军, 高颖, 等. 复杂战场电磁环境建模与电磁态势 可视化技术[J]. 西北工业大学学报, 2015, 33(3): 406-412.
GUO Shu-xia,ZHOU Shi-jun,GAO Ying,et al. Complex battlefield electromagnetic environment modeling and electromagnetic situation visualization[J]. Journal of Northwestern Polytechnical University, 2015, 33(3): 406-412. (in Chinese)
[4] SweeneyJ,Mueller K.Shear-warp deluxe: the shear-warp algorithm revisited[C]∥Proceedings of the Symposium on Data Visualization. Stony Brook:Center for Visual Computing,2002: 95-105.
[5] 杨超, 徐江斌, 吴玲达. 硬件加速的虚拟电磁环境体可视化[J]. 北京邮电大学学报, 2011, 34(1): 55-59.
YANG Chao,XU Jiang-bin,WU Ling-da. Hardware accelerated volume visualization in virtual electromagnetic environment[J]. Journal of Beijing University of Posts and Telecommunications, 2011, 34(1): 55-59.(in Chinese)
[6] Zhou Z,Tao Y,Lin H,et al. Shape-enhanced maximum intensity projection[J]. The Visual Computer,2011, 27(6/7/8): 377-686.
[7] 何丽君, 王晓强, 云健,等. 三维数据场体绘制研究进展[J]. 大连民族学院学报, 2012, 14(5): 486-491.
HE Li-jun,WANG Xiao-qiang,YUN Jian,et al. Recent advances in volume rendering for 3D data sets[J]. Journal of Dalian Nationalities University, 2012, 14(5): 486-491.(in Chinese)
[8] Fogal T,Childs H,Shankar S,et al. Large data visualization on distributed memory multi-GPU clusters[C]∥Proceeding of the Conference on High Performance Graphics. Switzerland:Eurographics Association Aire-la-Ville, 2010: 57-66.
[9] Lindstrom P,Isenburg M. Fast and efficient compression of floating point data[J]. IEEE Transactions on Visualization and Computer Graphics,2006,12(5):1245-1250.
[10] 高颖, 张政, 王凤华,等.复杂电磁环境建模与可视化研究综述[J].计算机工程与科学, 2014, 36(9):1742-1747.
GAO Ying,ZHANG Zheng,WANG Feng-hua,et al. Survey on complex electromagnetic environment modeling and visualization[J]. Computer Engineering and Science, 2014, 36(9):1742-1747.(in Chinese)
[11] BiddiscombeJ,Geveci B,Martin K,et al. Time dependent processing in a parallel pipeline architecture[J]. IEEE Transactions on Visualization and Computer Graphics,2007,13(6):1376-1383.
[12] Jang Y,Ebert D,Gaither K. Time-varying data visualization using functional representations[J]. IEEE Transactions on Visualization and Computer Graphics,2012,18(3):421-433.
[13] 沈恩亚, 曾亮, 徐华勋, 等. 基于交互模糊特征提取的三维流场可视化研究[J]. 中国图像图形学报, 2011, 16(5):1121-1126.
SHEN En-ya,ZENG Liang,XU Hua-xun,et al. Fuzzy-based interactive feature description and extraction of 3D flows[J]. Journal of Image and Graphics, 2011, 16(5):1121-1126.(in Chinese)
[14] 杨永侠. 电磁场与电磁波[M]. 西安: 西北工业大学出版社, 2011: 38-40.
YANG Yong-xia. Electromagnetic field and electromagnetic waves [M]. Xi'an:Northwestern Polytechnical University Press, 2011: 38-40.(in Chinese)
[15] 杨超, 徐江斌, 赵健, 等. 基于多层等值面的电磁环境三维可视化研究[J]. 系统工程与电子技术, 2009, 31(11):2767-2772.
YANG Chao,XU Jiang-bin,ZHAO Jian,et al. Research on 3D visualization of electromagnetic environment based on multi-isosurface[J]. Systems Engineering and Electronics, 2009, 31(11): 2767-2772.(in Chinese)
[16] Elmar S,Steffen B,Gregor P. Damage visualization and deformation during projectile measurement in glass laminates penetration[J]. Defence Technology, 2014, 10(2): 226-238.

361

Accesses

0

Citation

Detail

段落导航
相关文章

/