面基层间不同结合状态下发射场坪动态响应研究

周晓和;马大为;朱忠领;廖选平;鞠晓杰

兵工学报 ›› 2015, Vol. 36 ›› Issue (12) : 2269-2277.

兵工学报 ›› 2015, Vol. 36 ›› Issue (12) : 2269-2277. DOI: 10.3969/j.issn.1000-1093.2015.12.009
论文

面基层间不同结合状态下发射场坪动态响应研究

  • 周晓和1, 马大为2, 朱忠领2, 廖选平1, 鞠晓杰1
作者信息 +

Research on Dynamic Response of Launching Site Based on Different Interlayer Binding States

  • ZHOU Xiao-he1, MA Da-wei2, ZHU Zhong-ling2, LIAO Xuan-ping1, JU Xiao-jie1
Author information +
文章历史 +

摘要

为了得到面基层间不同结合状态下无依托发射场坪的动态响应,基于Cohesive单元的双线性内聚力本构,建立了层间结合数学模型,进一步建立了含层间效应的发射场坪数值模型;引入初始损伤变量并结合应变等价性假设,建立了层间不同结合状态数学模型;以含层间效应的发射场坪数值模型为基础,完成了面基层间不同结合状态下的发射场坪数值模型的建立,分析了发射筒底部处场坪面基层间界面的损伤分布与演化,研究了面基层间不同结合状态下发射场坪动态响应的变化。结果表明:当面基层间结合状态一定时,发射筒底部对地载荷作用边界处面基层间界面损伤最严重,且沿着载荷作用区域半径方向,面基层间界面损伤分布表现为先增加、后减小的规律;随着面基层间结合状态的变差,沿载荷作用区域半径方向,面基层间界面损伤演化表现为中间不变、两边减小的规律,场坪面层垂向位移和水平位移产生不同程度的变大,面层、基层层底中心最大应力均变小。为了得到面基层间不同结合状态下无依托发射场坪的动态响应,基于Cohesive单元的双线性内聚力本构,建立了层间结合数学模型,进一步建立了含层间效应的发射场坪数值模型;引入初始损伤变量并结合应变等价性假设,建立了层间不同结合状态数学模型;以含层间效应的发射场坪数值模型为基础,完成了面基层间不同结合状态下的发射场坪数值模型的建立,分析了发射筒底部处场坪面基层间界面的损伤分布与演化,研究了面基层间不同结合状态下发射场坪动态响应的变化。结果表明:当面基层间结合状态一定时,发射筒底部对地载荷作用边界处面基层间界面损伤最严重,且沿着载荷作用区域半径方向,面基层间界面损伤分布表现为先增加、后减小的规律;随着面基层间结合状态的变差,沿载荷作用区域半径方向,面基层间界面损伤演化表现为中间不变、两边减小的规律,场坪面层垂向位移和水平位移产生不同程度的变大,面层、基层层底中心最大应力均变小。

Abstract

To obtain the dynamic response of the launching site under the different binding states of base and surface layers, an interlayer binding mathematical model of base and surface layers is established based on bilinear cohesion constitutive of cohesive element. A cohesion mathematical model under different binding states of base and surface layers is established by introducing the initial damage variable and using the strain equivalence hypothesis. A numerical model of launching site under different binding states of base and surface layer is built based on the numerical model with interlayer effect, the distribution and evolution of damage on base-surface layer interface of the launching site below the bottom of launch canister are analyzed, and the dynamic response of the launching site under different binding states of base and surface layer is researched. The result shows that, when the base-surface layer binding state remains constant, the interface damage is the most serious in the base layer where the boundary is forced by the load applied by the bottom of the launch canister, and the interface damage of the base layer firstly increases and then decreases along the radius direction of the load area. When the binding state of base and surface layer gets worse,the interface damage of the base layer is invariant in the middle and decrease on both sides along the radius direction of the load area, the vertical and horizontal displacements of the launching site surface get larger in different degrees, and the maximum stresses of the surface and base layers center-bottom points get smaller.

关键词

兵器科学与技术 / 发射场坪 / 层间界面 / 内聚力本构 / 初始损伤 / 动态响应

Key words

ordnance science and technology / launching site / interlayer interface / cohesion constitutive / initial damage / dynamic response

引用本文

导出引用
周晓和, 马大为, 朱忠领, 廖选平, 鞠晓杰. 面基层间不同结合状态下发射场坪动态响应研究. 兵工学报. 2015, 36(12): 2269-2277 https://doi.org/10.3969/j.issn.1000-1093.2015.12.009
ZHOU Xiao-he, MA Da-wei, ZHU Zhong-ling, LIAO Xuan-ping, JU Xiao-jie. Research on Dynamic Response of Launching Site Based on Different Interlayer Binding States. Acta Armamentarii. 2015, 36(12): 2269-2277 https://doi.org/10.3969/j.issn.1000-1093.2015.12.009

基金

国家自然科学基金项目(51303081); 江苏省自然科学基金项目(BK20130761)

参考文献

[1] Spearman M L. Innovation in aerodynamic design features of soviet missiles,NASA 20080014230 [R].Virginia:American Institute of Aeronautics and Astronautics, 2008.
[2] Seow Y W. Survivability enhancement in a combat environment,ADA429875 [R]. CA:Naval Postgraduate School Monterey,2004.
[3] 严二虎, 沈金安. 半刚性基层与沥青层之间界面条件对结构性能的影响[J]. 公路交通科技, 2004, 21(1): 38-41.
YAN Er-hu, SHEN Jin-an. Structural influence of boundary condition between asphalt layer and semi-rigid base[J].Journal of Highway and Transportation Research and Development, 2004, 21(1):38-41.(in Chinese)
[4] 薛亮, 张维刚, 梁鸿颉. 考虑层间不同状态的沥青路面力学响应分析[J]. 沈阳建筑大学学报:自然科学版, 2006, 22(4):575-578.
XUE Liang, ZHANG Wei-gang, LIANG Hong-jie. The mechanical response analysis of asphalt pavement in different interface condition between layers[J]. Journal of Shenyang Jianzhu University:Natural Science, 2006, 22(4): 575-578. (in Chinese)
[5] 关昌余, 王哲人. 路面结构层间结合状态的研究[J]. 中国公路 学报, 1989, 2(1): 70-80.
GUAN Chang-yu, WANG Zhe-ren. Analysis interface bond of the pavement structures[J]. China Journal of Highway and Transport, 1989, 2(1): 70-80. (in Chinese)
[6] 颜可珍, 江毅, 黄立葵, 等. 层间接触对沥青加铺层性能的影响[J].湖南大学学报:自然科学版, 2009, 36(5): 11-15.
YAN Ke-zhen, JIANG Yi, HUANG Li-kui, et al. Effect of bond condition on overlay performance[J]. Journal of Hunan University:Natural Sciences, 2009, 36(5): 11-15. (in Chinese)
[7] Goodman R E, Taylor R L, Brekke T L. A model for the mechanics of jointed rock[J]. The Soil Mechanics and Foundations Division, 1968, 94(3): 637-658.
[8] Dempsey B J. Development and performance of interlayer stress absorbing composite in asphalt concrete overlays[J]. Transportation Research Record, 2002,1809(1): 175-183.
[9] 黄宝涛, 廖公云, 张静芳. 半刚性基层沥青路面层间接触临界 状态值的计算方法[J]. 东南大学学报:自然科学版, 2007, 37(4): 666-670.
HUANG Bao-tao, LIAO Gong-yun, ZHANG Jing-fang. Analytical method of interlayer contact fettle in semi-rigid base bituminous pavement[J]. Journal of Southeast University:Natural Science Edition, 2007, 37(4): 666-670. (in Chinese)
[10] 艾长发, 邱延峻, 毛成, 等. 考虑层间状态的沥青路面温度与荷载耦合行为分析[J]. 土木工程学报, 2007, 40(12): 99-104.
AI Chang-fa, QIU Yan-jun, MAO Cheng, et al. Simulation of the temperature load coupling effect on asphalt pavement considering interlayer conditions[J]. China Civil Engineering Journal, 2007, 40(12): 99-104. (in Chinese)
[11] 赵炜诚, 许志鸿, 黄文. 混凝土面层与贫混凝土基层的层间作用对荷载应力和弯沉的影响[J]. 中国公路学报, 2003, 16(4): 9-15.
ZHAO Wei-cheng, XU Zhi-hong, HUANG Wen. Influence of load stress and deflection on interfacial interaction between portland concrete pavement and lean concrete base[J]. China Journal of Highway and Transport, 2003, 16(4): 9-15.(in Chinese)
[12] 李彦伟, 穆柯, 石鑫, 等. 基面层间接触状态对沥青路面力学 响应影响[J]. 长安大学学报: 自然科学版, 2014, 34(2):38-44.
LI Yan-wei, MU Ke, SHI Xin, et al. Impact of base-surface contact condition on mechanical response of asphalt pavement[J]. Journal of Chang'an University: Natural Science Edition, 2014, 34(2): 38-44.(in Chinese)
[13] 张东, 黄晓明, 赵永利. 基于内聚力模型的沥青混合料劈裂试验模拟[J]. 东南大学学报: 自然科学版, 2010, 40(6): 1276-1281.
ZHANG Dong, HUANG Xiao-ming, ZHAO Yong-li. Simulation of indirect tension test of asphalt ixtures based on cohesive zone model[J]. Journal of Southeast University: Natural Science Edition, 2010, 40(6): 1276-1281.(in Chinese)
[14] Song S H, Paulino G H, Buttlar W G. A bilinear cohesive zone model tailored for fracture of asphalt concrete considering visco-elastic bulk material[J]. Journal of Engineering Fracture Mechanics, 2006, 73(18):2829-2848.
[15] 吴超凡. 贫混凝土基层混凝土路面层间作用机理及处治技术研究[D]. 西安:长安大学, 2009.
WU Chao-fan. Research on action mechanism and handling technology between cement concrete pavement and lean cement concrete base[D]. Xi'an:Chang'an University, 2009.(in Chinese)
[16] 王金昌,朱向荣. 软土地基上沥青混凝土路面动力分析[J]. 公路, 2004(3): 6-11.
WANG Jin-chang,ZHU Xiang-rong. Dynamic analysis of asphalt concrete pavement on soft clay ground[J]. Highway, 2004(3): 6-11.(in Chinese)
[17] 左志国, 曹高尚, 宋红领. Thiopave改性沥青路面力学响应研究[J]. 青岛理工大学学报, 2011, 32(6): 26-29.
ZUO Zhi-guo, CAO Gao-shang, SONG Hong-ling. Research on mechanical response of Thiopave modified bituminous pavements[J]. Journal of Qingdao Technological University, 2011, 32(6):26-29.(in Chinese)
[18] 柳志军,刘春荣,胡朋,等. 土基回弹模量合理取值试验研究[J]. 重庆交通学院学报, 2006, 25(3):62-64.
LIU Zhi-jun, LIU Chun-rong, HU Peng, et al. Experiment study on reasonable evaluation of rebound modulis of subgrade[J]. Journal of Chongqing Jiaotong College, 2006, 25(3): 62-64.(in Chinese)

434

Accesses

0

Citation

Detail

段落导航
相关文章

/