一种随行装药的燃烧性能

梁泰鑫;吕秉峰;马忠亮;肖忠良

兵工学报 ›› 2015, Vol. 36 ›› Issue (9) : 1660-1664.

兵工学报 ›› 2015, Vol. 36 ›› Issue (9) : 1660-1664. DOI: 10.3969/j.issn.1000-1093.2015.09.009
论文

一种随行装药的燃烧性能

  • 梁泰鑫, 吕秉峰, 马忠亮, 肖忠良
作者信息 +

Combustion Performance of a Traveling Charge

  • LIANG Tai-xin, LYU Bing-feng, MA Zhong-liang, XIAO Zhong-liang
Author information +
文章历史 +

摘要

为解决随行装药的点火延迟控制及能量释放稳定性问题,提出了一种新的随行装药方案,采用密闭爆发器与30 mm火炮试验对其延时机构的有效性、能量释放的稳定性及燃速进行了研究。结果表明:依托随行装药高密实性,延时机构可对随行装药点火延迟时间进行有效控制;主装药量一定,延时机构厚度存在较佳值,以获得较优的随行装药效应;试验结果基本稳定,初步验证了随行装药结构可靠,燃烧性能基本稳定,有较好的能量释放规律;随行装药具有较高的燃速、燃气释放速率,多-125发射药含量95%时,其燃速最大值是6/7发射药的46倍,最大动态活度达7.4 MPa-1·s-1.改变随行装药中多-125发射药的含量,其燃速、燃气释放速率可调。

Abstract

In order to solve the problems of the ignition delay control and the energy release stability of traveling charge, a new traveling charge scheme is presented. The validity of time delay unit, stability of energy release and burning rate of traveling charge are studied by the closed bomb and 30 mm gun test. The results show that the ignition delay time of traveling charge can be controlled by the time delay unit based on its high density. There is an appropriate thickness of time delay unit, which can obtain an optimum effect of traveling charge, when the main charge remains constant. The experimental results are basically stable, which preliminarily verified the structural reliability of traveling charge, basic stable combustion performance and favorable energy release rule. The traveling charge has higher burning rate and gas release rate. When the content of porous propellant 125 charge is 95%, the maximum burning rate of traveling charge is 46 times as fast as 6/7 propellant, and the maximum dynamic vivacity reaches 7.4 MPa-1 · s-1.The burning rate and gas release rate of traveling charge can be adjusted by changing the content of porous propellant 125 charge.

关键词

兵器科学与技术 / 随行装药 / 燃烧性能 / 点火延迟 / 内弹道性能 / 增加初速

Key words

ordnance science and technology / traveling charge / combustion performance / ignition delay / internal ballistic performance / muzzle velocity increment

引用本文

导出引用
梁泰鑫, 吕秉峰, 马忠亮, 肖忠良. 一种随行装药的燃烧性能. 兵工学报. 2015, 36(9): 1660-1664 https://doi.org/10.3969/j.issn.1000-1093.2015.09.009
LIANG Tai-xin, LYU Bing-feng, MA Zhong-liang, XIAO Zhong-liang. Combustion Performance of a Traveling Charge. Acta Armamentarii. 2015, 36(9): 1660-1664 https://doi.org/10.3969/j.issn.1000-1093.2015.09.009

基金

国家部委预先研究项目(404060401)

参考文献

[1] 肖忠良. 提高火炮初速(动能)技术途径与潜力分析[J]. 华北工学院学报,2001, 22(4): 277-280.
XIAO Zhong-liang. The analysis of the technical way and potentiality on improving initial velocity of gun[J]. Journal of North China Institute of Technology, 2001, 22(4): 277-280. (in Chinese)
[2] 王泽山, 何卫东, 徐复铭. 火药装药设计原理与技术[M]. 北京:北京理工大学出版社, 2006: 249-258.
WANG Ze-shan, HE Wei-dong, XU Fu-ming. Propellant charge design principle and technology[M].Beijing: Beijing Institute of Technology Press, 2006: 249-258. (in Chinese)
[3] 王琼林, 刘少武, 张远波, 等. 程序控制燃烧发射药的概念和原理[J]. 火炸药学报, 2009, 32(5): 71-74.
WANG Qiong-lin, LIU Shao-wu, ZHANG Yuan-bo, et al. Conception and principle of controlled burning gun propellant[J]. Chinese Journal of Explosives and Propellants, 2009, 32(5): 71-74. (in Chinese)
[4] TompkinsR E, White K J, Oberle W F, et al. Traveling charge gun firings using very high burning rate propellants, BRL-TR-2970[R].Aberdeen: BRL, 1989.
[5] Michel S, Dieter H.Application of stationary deflagration to traveling charge[C]//14th International Symposium on Ballistics. Quebec, Canada: ADPA, 1993: 429-438.
[6] 杨京广, 余永刚. 随行装药方案提高大口径火炮初速的数值预测[J]. 爆炸与冲击, 2008, 28(2): 161-165.
YANG Jing-guang, YU Yong-gang. Velocity prediction of big caliber gun based on traveling charge scheme[J]. Explosion and Shock Wares, 2008, 28(2): 161-165. (in Chinese)
[7] 杨京广, 余永刚. 固体随行装药内弹道模型及数值模拟[J]. 火炮发射与控制学报, 2006,27(2): 1-5.
YANG Jing-guang, YU Yong-gang. Interior ballistic model and numerical simulation of solid traveling charge[J]. Journal of Gun Launch and Control, 2006,27(2): 1-5. (in Chinese)
[8] Liu D Y, Zhao Z Y, Yu Y G, et al. Experiments on the combustion characteristics of deterrent-coated propellants and their applicationin traveling charge propulsion[J]. Combust Science and Technology, 2012, 184(2): 178-185.
[9] 黄振亚, 何卫东, 肖忠良, 等. 发射药及其装药技术[M]. 北京:中国科学技术出版社, 2014: 53-75.
HUANG Zhen-ya, HE Wei-dong,XIAO Zhong-liang, et al. Report on the science and technology advancement of gun propellants[M]. Beijing: China Science and Technology Press, 2014: 53-75. (in Chinese)
[10] 姚月娟, 刘少武, 张琼林, 等. 颗粒模压发射药的燃烧性能[J]. 含能材料, 2012, 20(1): 76-79.
YAO Yue-juan, LIU Shao-wu, WANG Qiong-lin, et al. Burning performance of grain-molded propellant [J]. Chinese Journal of Energetic Materials, 2012, 20(1): 76-79. (in Chinese)
[11] 梁勇, 姚月娟, 杨建, 等. 颗粒密实模块药的弹道性能[J]. 火炸药学报, 2010, 33(3): 51-54.
LIANG Yong,YAO Yue-juan, YANG Jian, et al. Ballistic performance of gun propellant grain compressed modular[J]. Chinese Journal of Explosives and Propellants, 2010, 33(3): 51-54. (in Chinese)
[12] 马忠亮, 夏萍, 贺增弟, 等. 胶黏固结发射药的燃烧性能[J]. 火炸药学报, 2006, 29(5): 60-62.
MA Zhong-liang, XIA Ping, HE Zeng-di, et al. Combustion properties of a glued consolidation gun propellant[J]. Chinese Journal of Explosives and Propellants, 2006, 29(5): 60-62.(in Chinese)
[13] 肖正刚, 应三九, 徐复铭. 粘结压实药柱解体及渐增性燃烧性能的中止实验研究[J]. 弹道学报, 2013, 25(3): 70-74.
XIAO Zheng-gang, YING San-jiu, XU Fu-ming. Experimental studies of interrupted burning characteristics and deconsolidation performance of consolidated propellant charge[J]. Journal of Ballistics, 2013, 25(3): 70-74. (in Chinese)
[14] 肖正刚, 应三九, 徐复铭. 粘结压实药柱变容燃烧中止实验研究[J]. 弹道学报, 2014, 26(1): 1-5.
XIAO Zheng-gang, YING San-jiu, XU Fu-ming. Experimental studies on interrupted burning of consolidated propellant charges in semi-closed chamber with variable volume[J]. Journal of Ballistics, 2014, 26(1): 1-5. (in Chinese)
[15] 金志明. 枪炮内弹道学[M]. 北京: 北京理工大学出版社, 2004: 130-134.
JIN Zhi-ming. Gun interior ballistics[M]. Beijing: Beijing Institute of Technology Press, 2004: 130-134. (in Chinese)

479

Accesses

0

Citation

Detail

段落导航
相关文章

/