为了研究固体火箭发动机意外遇到火焰环境时的热安全性问题,以高氯酸铵/端羟基聚丁二烯(AP/HTPB)复合固体推进剂为装填对象,针对某种小型固体火箭发动机建立了二维烤燃简化模型。分别对800 K、1 000 K、 1 200 K火焰环境下固体火箭发动机的烤燃特性进行了数值模拟。计算结果表明,3种火焰环境下,AP/HTPB最初着火位置均发生在靠近喷管的药柱外壁一环形区域内;随着火焰温度的提高,着火延迟期快速缩短,着火温度逐渐增大;绝热层的绝热作用随着火焰温度的增大而增强;复合固体推进剂中AP首先发生缓慢分解时的温度随火焰温度的提高而增大。
Abstract
In order to study the thermal safety problems of solid rocket motor in unexpected flame environment, a two-dimensional model for cook-off of a small solid rocket motor is established, in which the composite solid propellant AP/HTPB is taken as a loading object. The cook-off characteristics of the solid rocket motor are calculated in 800 K, 1 000 K and 1 200 K flame environments, respectively. The results show that the initial ignition position of AP/HTPB is occurred in an annular region on the outer wall of propellant close to the nozzle. With the improvement of the flame temperature, the ignition delay period is shortened quickly, and the ignition temperature is gradually increased. Heat insulating effect of the insulating layer increases as the flame temperature increases. The initial slow decomposition temperature of AP component in the composite solid propellant increases with the increase in flame temperature.
关键词
兵器科学与技术 /
热安全性 /
火焰环境 /
烤燃 /
固体火箭发动机 /
固体推进剂 /
高氯酸铵/端羟基聚丁二烯 /
数值计算
{{custom_keyword}} /
Key words
ordnance science and technology /
thermal safety /
flame environment /
cook-off /
solid rocket motor /
solid propellant /
AP/HTPB /
numerical calculation
{{custom_keyword}} /
基金
国家自然科学基金项目(51176076); 江苏省研究生培养创新工程项目(SJLX15_0170)
{{custom_fund}}
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] HoS Y. Thermomechanical properties of rocket propellants and correlation with cookoff behaviour [J]. Propellants, Explosives, Pyrotechnics, 1995, 20(4): 206-214.
[2] HoS Y, Ferschl T, Foureur J. Correlation of cook-off behavior of rocket propellants with thermo-mechanical and thermochemical properties, ADA274983[R]. AU: DSTO, 1993.
[3] SumrallT S. Large scale fast cook-off sensitivity results of a melt castable general purpose insensitive high explosive [J]. Propellants, Explosives,Pyrotechnics, 1999, 24(2): 61-64.
[4] CaroR I, Bellerby J M. Behavior of hydroxyl-terminated polyether (htpe) composite rocket propellants in slow cook-off [J]. International Journal of Energetic Materials and Chemical Propulsion, 2008, 7(3): 171-185.
[5] KomaiI, Sato W. Reaction mechanism in slow cook-off test of GAP-AP propellants [C]∥Insensitive Munitions and Energetic Materials Technology Symposium (IMEMTS).Bristol, UK: Insensitive Munitions European Manufacturers Group, 2006:24-28.
[6] 秦能,裴江峰,王明星. 一种RDX-CMDB推进剂危险性能研究[J]. 含能材料, 2011, 19(6): 725-729.
QIN Neng, PEI Jiang-feng, WANG Ming-xing. Hazard property of the RDX-CMDB propellant [J]. Chinese Journal Energetic Materials,2011,19(6): 725-729. (in Chinese)
[7] 秦能,裴江峰. 某种RDX-CMDB螺压推进剂刺激-响应特性试验研究[C]∥ 中国化学会第五届全国化学推进剂学术会议. 大连: 中国化学会,2011.
QIN Neng, PEI Jiang-feng. Stimulate-response characteristic test research of a screw press propellant of RDX-CMDB [C]∥The 5th National Conference on Chemical Propellant of Chinese Chemistry. Dalian: Chinese Chemical Society, 2011. (in Chinese)
[8] 胥会祥,赵凤起,庞维强,等. 含FOX-12的高燃速HTPB推进剂性能[J].固体火箭技术, 2011, 34(6): 745-749.
XU Hui-xiang, ZHAO Feng-qi, PANG Wei-qiang, et al. Properties of high burning rate HTPB propellant containing FOX-12 [J]. Journal of Solid Rocket Technology, 2011, 34(6): 745-749. (in Chinese)
[9] 丁黎,王琼,张腊莹,等. 高固含量对改性双基推进剂的热安全特性影响[C]∥第二届全国危险物质与安全应急技术研讨会.
四川成都: 中国化学会,2013.
DING Li, WANG Qiong, ZHANG La-ying, et al. Thermal safety characteristics influence of modified double-base propellant with different high solid contents [C]∥The 2nd National Hazardous Materials and Safety Emergency Technical Seminar. Chengdu, Sichuan: Chinese Chemical Society,2013. (in Chinese)
[10] 李高春,袁书生,原渭兰,等. 固体火箭发动机的热响应研究 [J]. 弹箭与制导学报,2005, 25(4): 371-373.
LI Gao-chun, YUAN Shu-sheng, YUAN Wei-lan, et al. Investigation on the thermal response of solid rocket motor [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2005, 25(4): 371-373. (in Chinese)
[11] 原渭兰,潘浪. 一种舰载导弹固体火箭发动机烤燃过程的数值计算 方法[J]. 舰船科学技术,2009, 31(7): 129-132.
YUAN Wei-lan, PAN Lang. An numerical calculation method on cook-off of solid rocket motor of ship-based missiles [J]. Ship Science and Technology, 2009, 31(7): 129-132.(in Chinese)
[12] ZhouX U, Jackson T L, Buckmaster J. Oscillations in propellant flames with edges [J]. Combustion and Flame, 2003, 133(1/2): 157-168.
[13] HegabA, Jackson T L, Buckmaster J, et al. Nonsteady burning of periodic sandwich propellants with complete coupling between the solid and gas phases [J]. Combustion and Flame, 2001, 125(1): 1055-1070.
[14] WangX, Jackson T L, Massa L. Numerical simulation of heterogeneous propellant combustion by a level set method [J]. Combustion Theory and Modelling, 2004, 8(2): 227-254.
[15] 杨世铭,陶文铨. 传热学[M]. 北京:高等教育出版社,2006: 558-560.
YANG Shi-ming, TAO Wen-quan. Heat transfer [M].Beijing: Higher Education Press, 2006: 558-560. (in Chinese)
[16] 陈广南,张为华. 固体火箭发动机撞击与热安全性分析[M]. 北京: 国防工业出版社, 2008: 196-197.
CHEN Guang-nan, ZHANG Wei-hua. Safety analyses for solid rocket motors under insults of impact and heat[M].Beijing: National Defense Industry Press,2008: 196-197. (in Chinese)
[17] KimK H, Kim C K, Yoo J C. Test-based thermal decomposition simulation of AP/HTPB and AP/HTPE propellants [J]. Journal of Propulsion and Power, 2011, 27(4): 822-827.
[18] GwakM, Jung T, Yoh J J. Friction-induced ignition modeling of energetic materials [J]. Journal of Mechanical Science and Technology, 2009, 23(7): 1779-1787.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}