一种履带式全方位移动平台转向滑移功率比分析

张豫南;黄涛;张舒阳;张杰

兵工学报 ›› 2015, Vol. 36 ›› Issue (8) : 1562-1568.

兵工学报 ›› 2015, Vol. 36 ›› Issue (8) : 1562-1568. DOI: 10.3969/j.issn.1000-1093.2015.08.026
研究简报

一种履带式全方位移动平台转向滑移功率比分析

  • 张豫南1, 黄涛1,2,张舒阳1,张杰1
作者信息 +

Analysis about Steering Slip Power Ratio of a Tracked Omnidirectional Mobile Platform

  • ZHANG Yu-nan1, HUANG Tao1,2, ZHANG Shu-yang1, ZHANG Jie1
Author information +
文章历史 +

摘要

针对现有全方位移动平台在工程应用的局限性,结合Mecanum轮和传统履带行走机构的结构原理,提出全方位移动履带,并描述履带式全方位移动平台的布局结构。由于履带在转向过程中也不可避免地存在与地面之间的滑动,为了比较履带式全方位移动平台与传统履带式移动平台的转向滑动阻力功耗,提出转向滑移功率比的概念,并分析中心转向的滑移功率比。研制采用独立电驱动的原理样车。当滚轮锁住时,样车可等效为传统履带式移动平台。分别测量在滚轮自由和锁住两种状态下样车以最高速度匀速中心转向时的总功耗,即电池的输出电流。试验结果表明,样车在滚轮自由状态下的转向总功耗比滚轮锁住状态下的转向总功耗减小了约53%. 因此,履带式全方位移动平台可以改善传统履带式移动平台的转向功率消耗。

Abstract

For the limitations of the existing omnidirectional mobile platforms in engineering applications, an omnidirectional track is proposed based on the structure principles of the Mecanum wheel and conventional tracked running mechanisms, and the layout structure of the tracked omnidirectional mobile platform is described. A new concept of steering slip power ratio is proposed by comparing the power consumption of steering sliding resistance of the tracked omnidirectional mobile platform with that of conventional tracked mobile platform because of inevitable slippage between the omnidirectional track and ground in steering motion. And the slip power ratio of steering motion at center point is analyzed. A prototype equipped with an independent electric driving system is developed. When the rollers are locked, the prototype is equivalent to an conventional tracked mobile platform, so the total power consumption of steering motion at center point, which is the total output current of the battery, is measured at the highest and uniform speed in the conditions of free rollers and locked rollers. The results show that the total power consumption of the prototype with free rollers is approximately 53% less than that of the prototype with locked rollers in the center-steering motion.

关键词

兵器科学与技术 / 全方位移动履带 / 移动平台 / 转向滑移功率比

Key words

ordnance science and technology / omnidirectional track / mobile platform / steering slip-power ratio

引用本文

导出引用
张豫南, 黄涛,张舒阳,张杰. 一种履带式全方位移动平台转向滑移功率比分析. 兵工学报. 2015, 36(8): 1562-1568 https://doi.org/10.3969/j.issn.1000-1093.2015.08.026
ZHANG Yu-nan, HUANG Tao, ZHANG Shu-yang, ZHANG Jie. Analysis about Steering Slip Power Ratio of a Tracked Omnidirectional Mobile Platform. Acta Armamentarii. 2015, 36(8): 1562-1568 https://doi.org/10.3969/j.issn.1000-1093.2015.08.026

基金

国防重点项目(2015ZB15)

参考文献

[1] 赵冬斌,易建强. 全方位移动机器人导论[M]. 北京,科学出版 社,2010.
ZHAO Dong-bin, YI Jian-qiang. Introduction of omni-directional mobile robots[M].Beijing: Science Press, 2010. (in Chinese)
[2] McGowenH. Navy omni-directional vehicle (ODV) development: where the rubber meets the deck[J]. Naval Engineers Journal,2000,112(4):217-228.
[3] 王双双. 全方位移动平台运动仿真与控制研究[D]. 北京:装甲兵 工程学院,2012.
WANG Shuang-shuang. Research on simulation and motion control of omnidirectional platform[D]. Beijing:Academy of Armored Forces Engineering,2012. (in Chinese)
[4] 侍才洪. 一种伤员换乘转运机器人的设计研究[D]. 北京: 军事 医学科学院,2010.
SHI Cai-hong. Development of the robot for transferring the injuried[D].Beijing: Academy of Military Medical Sciences, 2010. (in Chinese)
[5] JungW K, Hyun S H, Bong S K, et al. Assistive mobile robot systems helping the disable walkers in a factory environment[J]. International Journal of ARM,2008,9(2): 42-52.
[6] 张豫南.一种全方位移动履带及其平台: 中国, ZL201320057326.9[P]. 2013-07-24.
ZHANG Yu-nan. An omnidirectional mobile track running mechanism and platform:China, ZL201320057326.9[P]. 2013-07-24. (in Chinese)
[7] WestM, Asada H. Design of a holonomic omnidirectional vehicle [C]∥Proceedings of IEEE Internatioanl Conference on on Robotics and Automation. Piscataway, NJ, US: IEEE, 1992: 97-103.
[8] DamotoR, Cheng W,Hirose S. Holonomic omni-directional vehicle with new omni-wheel mechanism [C]∥Proceedings of IEEE International ConfErence on Robotics and Automation. Piscataway, NJ, US: IEEE, 2001: 773-778.
[9] ChenP, Mitsutake S, Isoda T, et al. Omni-directional robot and adaptive control method for off-road running [J]. IEEE Transactions on Robotics and Automation, 2002, 18(2): 251-256.
[10] ChenP, Koyama S, Mitsutake S, et al. Automatic running planning for omni-directional robot using genetic programming[C]∥Proceedings of IEEE International Symposium on Intelligent Control. NY, US: IEEE, 2002: 485-489.
[11] TadakumaK, Tadakuma R, Kinoshita H, et al, Mechanical design of cylindrical track for Ssideways motion[C]∥Proceedings of IEEE International Conference on Mechatronics and Automation. Piscataway, NJ, US: IEEE, 2008: 161-167.
[12] TadakumaK, Tadakuma R, Nagatani K, et al. Crawler vehicle with circular cross-section unit to realize sideways motion[C]∥Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ, US: IEEE, 2008: 2422-2428.
[13] 王一治, 常德功. Mecanum四轮全方位系统的运动性能分析及结构形式优选[J]. 机械工程学报, 2009, 45(5): 307-310.
WANG Yi-zhi, CHANG De-gong. Motion performance analysis and layout selection for motion system with four mecanum wheels [J]. Journal of Mechanical Engineering, 2009, 45(5): 307-310. (in Chinese)
[14] 黄涛, 张豫南, 田鹏,等. 一种履带式全方位移动平台的设计与运动学分析[J]. 机械工程学报, 2014, 50(21), 206-212.
HUANG Tao, ZHANG Yu-nan, TIANG Peng, et al. Design & kinematics analysis of a tracked omnidirectional mobile platform[J]. Journal of Mechanical Engineering, 2014, 50(21): 206-212. (in Chinese)
[15] MerhofW, Hackbarth E M.履带车辆行驶力学[M]. 韩雪海, 刘侃, 周玉珑, 译. 北京: 国防工业出版社, 1989.
Merhof W, Hackbarth E M. Running mechanics of tracked vehicle [M]. HAN Xue-hai, LIU Kan, ZHOU Yu-long, translated. Beijing: National Defense Industry Press, 1989. (in Chinese)
[16] 汪明德, 赵毓芹, 祝嘉光. 坦克行驶原理[M].北京: 国防工业 出版社, 1983.
WANG Ming-de, ZHAO Yu-qin, ZHU Jia-guang.Driving principle of tank [M]. Beijing: National Defense Industry Press, 1983. (in Chinese)

347

Accesses

0

Citation

Detail

段落导航
相关文章

/