To eliminate the phugoid trajectory oscillation and enforce the thermal protection, a predictor-corrector guidance method based on the feedback bank angle control is proposed for the lifting hypersonic vehicles. The design of the guidance method is independent of the traditional quasi equilibrium glide condition (QEGC) that might be out of work in some specific cases. The longitudinal guidance is first developed by predicting the longitudinal range error and correcting the magnitude of the guidance command. The altitude rate is modified in real time by using the feedback bank angle law. The reversal logic of bank angle is designed for the lateral guidance based on the crossrange error and the heading angle error. The numerical simulations show that the phugoid trajectory oscillations of the hypersonic vehicle can be eliminated without QEGC. The Monte Carlo results of the reentry guidance with random initial dispersion also demonstrate the robustness of the proposed algorithm.
[1] SarahN D,Nesrin S K. Survey of planetary entry guidance algorithms[J]. Progress in Aerospace Sciences,2014,68(1): 22-28. [2] ZhaoJ,Zhou R. Reentry trajectory optimization for hypersonic vehicle satisfying complex constraints[J]. Chinese Journal of Aeronautics,2013,26(6):1544-1553. [3] 袁宴波,张科,薛晓东. 基于Radau伪谱法的制导炸弹最优滑翔弹道研究[J]. 兵工学报,2014,35(8):1179-1186. YUAN Yan-bo,ZHANG Ke,XUE Xiao-dong. Optimization of glide trajectory of guided bombs using a Radau pseudo-spectral method[J]. Acta Armamentarii,2014,35(8):1179-1186. (in Chinese) [4] ZhaoJ,Zhou R,Jin X. Progress in reentry trajectory planning for hypersonic vehicle[J]. Journal of Systems Engineering and Electronics,2014,25(4):627-639. [5] 赵江,周锐. 考虑禁飞区规避的预测校正再入制导方法[J]. 北京航空航天大学学报,2015,41(5):864-870. ZHAO Jiang,ZHOU Rui. Predictor-corrector reentry guidance with no-fly zone constraints[J]. Journal of Beijing University of Aeronautics and Astronautics,2015,41(5):864-870. (in Chinese) [6] XueS,Lu P. Constrained predictor-corrector entry guidance[J]. Journal of Guidance Control and Dynamics,2010,33(4):1273-1281. [7] 王智,唐硕,闫晓东. 高超声速滑翔飞行器约束预测校正再入制导[J]. 飞行力学,2012,30(2):175-180. WANG Zhi, TANG Shuo, YAN Xiao-dong. Constrained predictor-corrector reentry guidance for hypersonic glide vehicle[J]. Flight Dynamics,2012,30(2):175-180. (in Chinese) [8] 刘冠南,周浩,陈万春. 高超声速飞行器再入多段导引方法研究[J]. 飞行力学,2012,30(4):337-341. LIU Guan-nan,ZHOU Hao,CHEN Wan-chun. A study on the multiple phrase reentry guidance method of hypersonic vehicle[J]. Flight Dynamics,2012,30(4):337-341. (in Chinese) [9] 王青,冉茂鹏,赵洋. 基于预测校正法的高超声速飞行器再入制导[J]. 北京航空航天大学学报,2013,39(12):1564-1568. WANG Qing,RAN Mao-peng,ZHAO Yang. Reentry guidance for hypersonic vehicle based on predictor-corrector method[J]. Journal of Beijing University of Aeronautics and Astronautics,2013,39(12): 1564-1568. (in Chinese) [10] 王青,莫华东,吴振东,等. 基于能量的高超声速飞行器再入混合制导方法[J]. 北京航空航天大学学报,2014,40(5):580-585. WANG Qing,MO Hua-dong,WU Zheng-dong,et al. Energy-based hybrid reentry guidance for hypersonic vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics,2014,40(5):580-585. (in Chinese) [11] 曾宪法,王洁瑶,王小虎. 基于能量和解析预测校正的滑翔制导[J]. 系统工程与电子技术,2013,35(12):2583-2589. ZENG Xian-fa,WANG Jie-yao,WANG Xiao-hu. Gliding guidance based on energy and analytical predictor-corrector[J]. Systems Engineering and Electronics,2013,35(12):2583-2589. (in Chinese) [12] 李强,夏群利,何镜,等. 基于大气预估的再入飞行机动减速制导方法[J]. 兵工学报,2013,34(9):1091-1096. LI Qiang,XIA Qun-li,HE Jing,et al. Maneuvering-deceleration guidance algorithm based on atmosphere estimation for reentry vehicle[J]. Acta Armamentarii,2013,34(9):1091-1096. (in Chinese) [13] 梁子璇,任章. 基于在线气动参数修正的预测制导方法[J]. 北京航空航天大学学报,2013,39(7):853-857. LIANG Zi-xuan,REN Zhang. Predictive reentry guidance with aerodynamic parameter online correction[J]. Journal of Beijing University of Aeronautics and Astronautics,2013,39(7):853-857. (in Chinese) [14] WangJ,Qu X,Ren Z. Hybrid reentry guidance based on the online trajectory planning[J]. Journal of Astronautics,2012,33(9): 1217-1224. [15] 王俊波,田源,任章. 基于最优化问题的混合再入制导方法[J]. 北京航空航天大学学报,2010,36(6):736-740. WANG Jun-bo,TIAN Yuan,REN Zhang. Mixed guidance method for reentry vehicles based on optimization[J]. Journal of Beijing University of Aeronautics and Astronautics,2010,36(6):736-740. (in Chinese) [16] ShenZ,Lu P. Onboard generation of three dimensional constrained entry trajectories[J]. Journal of Guidance,Control,and Dynamics,2003,26(1):111-121. [17] LeavittJ A,Mease K D. Feasible trajectory generation for atmospheric entry guidance[J]. Journal of Guidance,Control,and Dynamics,2007,30(2):473-481. [18] ZhaoJ,Zhou R,Jin X. Reentry trajectory optimization based on a multistage pseudospectral method[J]. Scientific World Journal,2014(878193):1-13. [19] ZhaoJ,Zhou R,Jin X. Gauss pseudospectral method applied to multi-objective spacecraft trajectory optimization[J]. Journal of Computational and Theoretical Nanoscience,2014,11(10):2242-2246. [20] LuP,Xue S. Rapid generation of accurate entry landing footprints[J]. Journal of Guidance Control and Dynamics,2010,33(3): 756-767. [21] LuP. Entry guidance: a unified method[J]. Journal of Guidance,Control,and Dynamics,2014,37(3):713-728.