维修-更换串联系统贮存可用度建模及费用分析

杨力;马小兵

兵工学报 ›› 2015, Vol. 36 ›› Issue (3) : 552-558.

兵工学报 ›› 2015, Vol. 36 ›› Issue (3) : 552-558. DOI: 10.3969/j.issn.1000-1093.2015.03.025
论文

维修-更换串联系统贮存可用度建模及费用分析

  • 杨力, 马小兵
作者信息 +

Storage Availability Modeling and Cost Analysis for a Repair-replacement Series System

  • YANG Li, MA Xiao-bing
Author information +
文章历史 +

摘要

针对长期贮存产品的维修保障特点,分别建立两类典型贮存部件的瞬时贮存可用度模型。一类部件为等时定检维修产品,定期检测有一定的概率无法探测到故障,若检测发现故障则立即进行维修,经过一段时间后修复如新;另一类部件为定期更换产品,其更换周期长度为维修类产品定检周期的整数倍。在此基础上,推导由这两类部件串联构成系统的瞬时和平均贮存可用度,并建立该系统贮存剖面内的维护费用模型。以固定贮存期内的费用率最低为目标,对检测周期以及更换周期进行了综合优化。计算结果表明:不同的周期长度配比对于费用率有较大的影响,合理的周期规划是实现贮存经济性的关键。

Abstract

According to the maintenance features of long-term storage products, the transient storage availability models for two typical kinds of components are established, respectively. A kind of component is inspected periodically. A failure may be missed by inspections with a fixed probability, and as soon as the failure is found, the component is repaired to as good as new condition after a period of time. The other kind of component is preventively replaced periodically, and the length of its replacement cycle is an integral multiple of that of the inspection cycle. Subsequently, the transient and average storage availabilities of the system which is composed of these two kinds of components are deduced, and a maintenance cost model for such a storage system is established. The inspection cycle length and replacement cycle length are optimized comprehensively for minimizing the average maintenance cost rate in a fixed storage period. The computed results indicate that the combination of these two variables has a large effect on the cost rate. A conclusion can be drawn that a reasonable schedule of maintenance cycle contributes to the reduction in the maintenance cost for a long-term storage system.

关键词

系统工程方法论 / 贮存可用度 / 费用分析 / 可修系统 / 定期检测 / 定期更换

Key words

system engineering methodology / storage availability / cost analysis / repairable system / periodic inspection / periodic replacement

引用本文

导出引用
杨力, 马小兵. 维修-更换串联系统贮存可用度建模及费用分析. 兵工学报. 2015, 36(3): 552-558 https://doi.org/10.3969/j.issn.1000-1093.2015.03.025
YANG Li, MA Xiao-bing. Storage Availability Modeling and Cost Analysis for a Repair-replacement Series System. Acta Armamentarii. 2015, 36(3): 552-558 https://doi.org/10.3969/j.issn.1000-1093.2015.03.025

基金

国家自然科学基金项目(61104133、61473014)

参考文献

[1] 罗巍, 张春华, 谭源源, 等. 基于Bootstrap的可修系统贮存可用度近似置信下限评估方法[J]. 兵工学报, 2010, 31(3):391-395.
LUO Wei, ZHANG Chun-hua, TAN Yuan-yuan, et al. Estimating method of approximate confidence lower limits of repairable system storage availability based on bootstrap[J]. Acta Armamentarii, 2010, 31(3):391-395.(in Chinese)
[2] 罗巍, 张春华, 谭源源, 等. 系统贮存可靠度近似置信下限的Boots trap评估方法[J] . 宇航学报, 2009, 30(4): 1725-1730.
LUO Wei, ZHANG Chun-hua, TAN Yuan-yuan, et al. Bootstrap estimate method of approximate confidence lower limits of system storage reliability[J]. Journal of Astronautics, 2009, 30 (4):1725- 1730.(in Chinese)
[3] Ito K, Nakagawa T, Nishi K. Extended optimal inspection policies for a system in storage[J]. Mathematical and Computer Modelling, 1995, 22(10):83-87.
[4] Ito K, Nakagawa T. Optimal inspection policies for a storage system with degradation at periodic tests[J]. Mathematical and Computer Modelling, 2000, 31(10):191-195.
[5] Scarf P A, Cavalcante C A V. Hybrid block replacement and inspection policies for a multi-component system with heterogeneous component lives[J]. European Journal of Operational Research, 2010, 206(2):384-394.
[6] Cavalcante C A V, Scarf P A, De Almeida A T. A study of a two-phase inspection policy for a preparedness system with a defective state and heterogeneous lifetime[J]. Reliability Engineering & System Safety, 2011, 96(6):627-635.
[7] Laggounea R,Chateauneuf A,Aissani D. Preventive maintenance scheduling for a multi-component system with non-negligible replacement time[J]. International Journal of Systems Science, 2010, 41(7):747-761.
[8] Liu X, Li J, Al-Khalifa K N, et al. Condition-based maintenance for continuously monitored degrading systems with multiple failure modes[J]. IIE Transactions, 2013, 45(4):422-435.
[9] Castanier B, Grall A, Bérenguer C. A condition-based maintenance policy with non-periodic inspections for a two-unit series system[J]. Reliability Engineering & System Safety, 2005, 87(1):109-120.
[10] GolmakaniH R. Condition-based inspection scheme for condition-based maintenance[J]. International Journal of Production Research, 2012, 50(14):3920-3935.
[11] TianZ, Liao H. Condition based maintenance optimization for multi-component systems using proportional hazards model[J]. Reliability Engineering & System Safety, 2011, 96(5):581-589.
[12] LaggouneR, Chateauneuf A, Aissani D. Impact of few failure data on the opportunistic replacement policy for multi-component systems[J]. Reliability Engineering & System Safety, 2010, 95(2): 108-119.
[13] Taghipour S, Banjevic D. Optimum inspection interval for a system under periodic and opportunistic inspections[J]. IIE Transactions, 2012, 44(11):932-948.
[14] Taghipour S, Banjevic D. Optimal inspection of a complex system subject to periodic and opportunistic inspections and preventive replacements[J]. European Journal of Operational Research, 2012, 220(3):649-660.
[15] Nakagawa T,Mizutani S,Chen M. A summary of periodic and random inspection policies[J]. Reliability Engineering and System Safety. 2010, 95(8):906-911.

Accesses

Citation

Detail

段落导航
相关文章

/