基于点电荷模型的舰船静电场反演算法研究

姜润翔;林春生;龚沈光

兵工学报 ›› 2015, Vol. 36 ›› Issue (3) : 545-551.

兵工学报 ›› 2015, Vol. 36 ›› Issue (3) : 545-551. DOI: 10.3969/j.issn.1000-1093.2015.03.024
论文

基于点电荷模型的舰船静电场反演算法研究

  • 姜润翔, 林春生, 龚沈光
作者信息 +

Electrostatic Electric Field Inversion Method for Ship Based on Point Charge Source Model

  • JIANG Run-xiang, LIN Chun-sheng, GONG Shen-guang
Author information +
文章历史 +

摘要

针对舰船静电场反演问题,提出一种基于点电荷模型的静电场反演方法。在利用舰船静电场先验信息对场源的粗略位置进行设定的基础上,利用泰勒展开式的收敛半径对场源的个数和位置进行计算,结合3层介质下点电荷电场的计算公式,建立等效场源系统的线性方程组,并通过对线性方程组的求解达到计算等效点电荷强度和舰船偶极矩的目的,利用实测数据对所提方法的有效性进行检验。研究结果表明:该算法由水深8 m的测量数据向水深22.5 m进行反演时,换算精度较高,误差值小于4%.

Abstract

For the issue of ship electrostatic field inversion, a method is proposed based on the point charge source. The position of equivalent point charge is set by the priori information. The number and accurate location of equivalent sources are calculated by using the Taylor expansion radius of convergence, and the linear equations for calculating the equivalent point source and the ship's equivalent electric moment are established. The effectiveness of the method is verified by the real data. The results show that the algorithm is high precision with the total error of less than 4%.

关键词

信息处理技术 / 舰船静电场 / 点电荷 / 反演 / 电多极矩 / 电偶极子

Key words

information processing technology / ship electrostatic field / point charge source / inversion / electric multi-pole moment / electric dipole

引用本文

导出引用
姜润翔, 林春生, 龚沈光. 基于点电荷模型的舰船静电场反演算法研究. 兵工学报. 2015, 36(3): 545-551 https://doi.org/10.3969/j.issn.1000-1093.2015.03.024
JIANG Run-xiang, LIN Chun-sheng, GONG Shen-guang. Electrostatic Electric Field Inversion Method for Ship Based on Point Charge Source Model. Acta Armamentarii. 2015, 36(3): 545-551 https://doi.org/10.3969/j.issn.1000-1093.2015.03.024

基金

国家自然科学基金项目(51109215)

参考文献

[1] HubbardJ C, Brooks S H, Torrrance B C. Practical measures for reduction and management of the electro-magnetic signatures of in-service surface ships and submarines[C]∥Underwater Defence Technology Conference. London,UK: Royal Navay, 1996:64-65.
[2] 林春生, 龚沈光. 舰船物理场[M]. 北京:兵器工业出版社, 2007:237-242.
LIN Chun-sheng, GONG Shen-guang. Physical fields of ships [M]. Beijing: Publishing House of Ordnance Industry, 2007:237-242. (in Chinese)
[3] 陈聪, 龚沈光, 李定国. 舰船静态电场深度换算方法[J]. 哈尔滨工程大学学报, 2009, 30(6):719-722.
CHEN Cong, GONG Shen-guang, LI Ding-guo. The method of extrapolation of the static electric field of ships[J]. Journal of Harbin Engineering University, 2009, 30(6):719-722.(in Chinese)
[4] 刘文宝, 王向军, 稽斗. 基于电偶极子模型的舰船静电场深度换算[J]. 空军雷达学院学报, 2010,24(6): 436-439.
LIU Wen-bao,WANG Xiang-jun, JI Dou. Conversion of static electric field depth of ships based on electric dipole model[J]. Journal of Air Force Radar Academy, 2010, 24(6):436-439.(in Chinese)
[5] 陈聪,李定国,龚沈光.基于拉氏方程的舰船静态电场深度换算[J].电子学报,2010,38(9):2025-2029.
CHEN Cong, LI Ding-guo, GONG Shen-guang. Research on the extrapolation of static electric field of ships based on Laplace equation[J]. Acta Electronica Sinica, 2010,38(9):2025-2029.(in Chinese)
[6] Daya Z A, Hutt D L, Richards T C. Maritime electromagnetism and DRDC management research[R]. Canada:Defence R&D Canada-Atlantic, 2005:1-80.
[7] Dymarkowski K, Uczciwek J. The extremely low frequency electromagnetic signature of the electric field of the ship[C]∥Underwater Defence Technology Conference. London, UK: SAAB Defence and Security, 2001: 1-6.
[8] Bostick F, Smith H, Boehl J. The detection of ULF-ELF emissions from moving ships[R]. New York:State Academic Educational Institutions, 1977:13-24.
[9] Mcgrath J N,Tighe-Ford D J,Hodgkiss L.Scale modeling of a ship's impressed-current cathodic protection system [J]. Corrosion Prevention & Control,1985,4:36-39.
[10] JonesD L, Burke C P. The DC filed components of horizontal and vertical electric dipole sources immersed in three-layered stratified media[J]. Annales Geophysicae, 1997,15(4):503-510.
[11] Susanu T, Lingvay I, Stoian F. The finite differences method to determine the potential function values in the three-dimensional space around a seagoing ship[C/OL]. 1991[2013-07-15].http:∥www.fict.ro/~ep/publications_files/elecship_98_slsp.pdf.
[12] Vanderlinde J. Classical electromagnetic theory[M]. 2th ed. London,UK: Springer,2005:33-35.
[13] King R W P.The electromagnetic field of a horizontal electric dipole in the presence of a three-layered region:supplement [J]. Journal of Applied Physics, 1993,74(8): 4845-4848.
[14] Ditchfield R W,Mcgrath J N,Tighe-Ford D J.Theoretical validation of the physical scale modeling of the electrical potential characteristics of marine impressed current cathodic protection[J].Journal of Applied Electrochemistry, 1995, 25(1):54-60.
[15] Degiorgi V G, Brebbia C A, Adey R A. Simulation of electrochemical processes II [C]∥Adey R, Baynham J M W. Predicting corrosion related signature:2nd International Conference on the Simulation Electochemical Processes.Southampton: WIT Press, 2007:368-371.

512

Accesses

0

Citation

Detail

段落导航
相关文章

/