从发射准备时间和对准精度等方面分析现代战争环境下车载导弹对初始对准的要求,提出利用自准直仪进行光学辅助数学传递对准的方法。给出光学辅助数学传递对准系统搭建方案,推导主、子惯导方位光学传递关系,将光学准直得到的相对方位测量角引入到“角速度+加速度”匹配模式中构成新的量测方程,对主、子惯导安装角进行滤波估计。在实验室条件下对方位光学传递算法的正确性和精度进行了验证,并对光学辅助数学传递对准方法进行了数学仿真分析,仿真结果表明,该方法具有较快的对准速度和较高的对准精度,能够满足现代车载导弹快速高精度初始对准的要求。
Abstract
The requirements of vehicle-launched missile for the initial alignment in modern warfare are analyzed from the aspects of launch preparation time and alignment accuracy. A new alignment method combining optical collimation and transfer alignment is proposed. A system construction scheme is proposed, and an optical azimuth transitive relation between master inertial navigation system (MINS) and slave inertial navigation system (SINS) is derived. The relative azimuth obtained by optical collimation is introduced into the measurement equation of “ angular rate plus acceleration matching” to estimate the installation angle between MINS and SINS by utilizing the Kalman filter. In the laboratory, the principle experiment is implemented to verify the optical azimuth transferalgorithm. The mathematical simulation for optically-aided transfer alignment is carried out. The simulation results show that the proposed method has fast convergence speed and high alignment accuracy to meet the demand of the initial alignment of modern vehicle-launched missiles.
关键词
控制科学与技术 /
车载导弹 /
光学辅助 /
自准直仪 /
传递对准 /
相对方位测量
{{custom_keyword}} /
Key words
control science and technology /
vehicle-launched missile /
optical aid /
collimator /
transfer alignment /
relative azimuth measurement
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 王丹丹, 陈小军, 王丽华. 新对准技术应用展望[J]. 导弹与航天运载技术, 2009(3):22-23.
WANG Dan-dan, CHEN Xiao-jun, WANG Li-hua. Outlook of new alignment technology applications[J]. Missile and Space Vechile, 2009(3):22-23.(in Chinese)
[2] 周载学, 傅正煊, 胡宪文. 发射技术[M]. 北京:中国宇航出版社, 2009:90-120.
ZHOU Zai-xue, FU Zheng-xuan, HU Xian-wen. Launch technology[M]. Beijing:China Astronautic Publishing House, 2009:90-120.(in Chinese)
[3] XuQing-jiu, Dai Hong-de, Wu Xiao-nan, et al. Design of simulation system about transfer alignment of SINS for shipborne equipment[C]∥2010 2nd International Conference on Information Science and Engineering. Hangzhou:IEEE, 2010:4506-4510.
[4] 胡健, 马大为, 程向红, 等. 基于Elman网络的传递对准容错联合滤波器设计与仿真[J]. 兵工学报, 2010, 31(11): 1502-1507.
HU Jian, MA Da-wei, CHENG Xiang-hong, et al. Transfer alignment using fault-tolerant federated STF based on Elman network[J]. Acta Armamentarii, 2010, 31(11): 1502-1507.(in Chinese)
[5] SunChang-yue, Deng Zheng-long. Transfer alignment of shipborne inertial-guided weapon systems[J]. Journal of Systems Engineering and Electronics, 2009, 20(2):348-353.
[6] WangYa-feng, Sun Fu-chun, Zhang You-an, et al. Central difference particle filter applied to transfer alignment for SINS on missiles[J]. Aerospace and Electronic Systems, 2012, 48(1):375-387.
[7] 王司, 邓正隆. 惯导系统动基座对准技术综述[J]. 中国惯性技术学报, 2003, 11(2):61-67.
WANG Si, DENG Zheng-long. Technique review of transfer alignment of inertial navigation system on moving base[J]. Journal of Chinese Inertial Technology, 2003, 11(2):61-67.(in Chinese)
[8] Shen Xiao-rong, Shi Yong-zhu. Angular rate matching method for shipboard transfer alignment based on H∞ filter[C]∥ 2011 6th IEEE Conference on Industrial Electronics and Applications. Beijing:IEEE, 2011:620-625.
[9] 韩鹏鑫, 穆荣军, 崔乃刚. 两种坐标系下惯导传递对准效果比较[J]. 中国惯性技术学报, 2010, 18(3): 272-278.
HAN Peng-xin, MU Rong-jun, CUI Nai-gang. Comparison between transfer alignments of inertial navigation system in two coordinates[J]. Journal of Chinese Inertial Technology, 2010, 18(3):272-278.(in Chinese)
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}