碳化硅颗粒增强铝基复合材料微细电火花线切割加工材料去除率研究

耿雪松;迟关心;王玉魁;王振龙

兵工学报 ›› 2014, Vol. 35 ›› Issue (6) : 891-899.

兵工学报 ›› 2014, Vol. 35 ›› Issue (6) : 891-899. DOI: 10.3969/j.issn.1000-1093.2014.06.021
论文

碳化硅颗粒增强铝基复合材料微细电火花线切割加工材料去除率研究

  • 耿雪松1, 迟关心1, 王玉魁1, 王振龙1,2
作者信息 +

Research on Material Removal Rate of SiC/Al Particulate Metal Matrix Composite by Micro-wire ElectricalDischarge Machining

  • GENG Xue-song1, CHI Guan-xin1, WANG Yu-kui1, WANG Zhen-long 1,2
Author information +
文章历史 +

摘要

碳化硅颗粒增强铝基(SiCp/Al)复合材料微细电火花线切割加工材料去除过程受多种因素交互影响,难以获得有效的材料去除率数学模型,而在多约束条件下试验研究不失为解决该问题的一种有效方法。采用中心复合设计(CCD)实验方法,设计三因素五水平的SiCp/Al复合材料微细电火花线切割加工实验方案。利用响应曲面法建立材料去除率与主要电源参数(开路电压、电容和脉宽)的二阶模型,通过对实验数据的多元二次拟合,获得材料去除率的二次回归数学模型。进一步分析了实际加工条件对工艺参数的约束,并以提高 SiCp/Al复合材料微细电火花线切割加工材料去除率为目标建立工艺参数优化模型。设计粒子群优化(PSO)算法及其流程进行优化问题求解,其结果显示PSO算法可以快速有效地获得满足多约束的最佳工艺参数。

Abstract

The material removal of SiC/Al particulate (SiCp/Al) metal matrix composite by micro-wire electrical discharge machining (micro-WEDM) is influenced by many factors, which makes it difficult to obtain the mathematical model of material removal rate (MRR) effectively. To solve this problem, an experimental study method is conducted under the constraint conditions. A central composite design (CCD) testing with 3-factor and 5-level is carried out, SiCp/Al metal matrix composite machining test scheme is designed, and then a second-order relational model is established between MRR and main power parameters (open-circuit voltage, discharge capacitance, and pulse duration) by using response surface methodology. Through multiple quadratic fitting, a quadratic regression mathematical model of MRR is obtained. Constrains of actual machining condition upon the parameters are analyzed further. With the goal of improving MRR of SiCp/Al metal matrix composite by micro-WEDM, a parameters optimization model is established. Particle swarm optimization algorithm and its procedure are designed to solve the model.

关键词

机械制造工艺与设备 / 金属基复合材料 / 微细电火花线切割加工 / 材料去除率 / 中心复合设计 / 粒子群优化

Key words

manufaturing technology and equipment / metal matrix composite / micro-WEDM / material removal rate / central composite design / particle swarm optimization

引用本文

导出引用
耿雪松, 迟关心, 王玉魁, 王振龙. 碳化硅颗粒增强铝基复合材料微细电火花线切割加工材料去除率研究. 兵工学报. 2014, 35(6): 891-899 https://doi.org/10.3969/j.issn.1000-1093.2014.06.021
GENG Xue-song, CHI Guan-xin, WANG Yu-kui, WANG Zhen-long. Research on Material Removal Rate of SiC/Al Particulate Metal Matrix Composite by Micro-wire ElectricalDischarge Machining. Acta Armamentarii. 2014, 35(6): 891-899 https://doi.org/10.3969/j.issn.1000-1093.2014.06.021

基金

国家重点基础研究发展计划项目(2012CB934102); 国家自然科学基金项目(51275112); 国家重大科技专项(2012ZX04001-011)

参考文献

[1] El-GallabM,Sklad M. Machining of Al/SiC particulate metal matrix composites: part Ⅱ: workpiece surface integrity[J]. Journal of Materials Processing Technology, 1998, 83 (1/2/3):277-285.
[2] DiIlio A,Paoletti A, Tagliaferri V, et al. An experimental study on grinding of silicon carbide reinforced aluminum alloys[J]. International Journal of Machine Tools and Manufacture, 1996, 36(6): 673-685.
[3] DavimJ P. Diamond tool performance in machining metal-matrix composites[J]. Journal of Materials Processing Technology, 2002, 128:100-105.
[4] SushantD, Rajesh P, Nishant S, et al. Mathematical modeling of electric discharge machining of cast Al-4Cu-6Si alloy-10 wt% SiCP composites[J]. Journal of Materials Processing Technology, 2007, 194:24-29.
[5] WangC C, Yan B H. Blind-hole drilling of Al2O3/6061Al composite using rotary electro-discharge machining[J]. Journal of Materials Processing Technology, 2000, 102:90-102.
[6] SinghP N, Raghukandan K, Rathinasabapathi M, et al. Electric discharge machining of Al-10%SiCP As-cast metal matrix composites[J]. Journal of Materials Processing Technology, 2004, 155/156:1653-1657.
[7] YanB H, Wang C C, Chow H M, et al. Feasibility study of rotary electrical discharge machining with ball burnishing for Al2O3/6061Al composite[J]. International Journal of Machine Tools & Manufacture, 2000, 40: 1403-1421.
[8] TaweelT L, Gouda S A. Performance analysis of wire electrochemical turning process-RSM approach[J]. The International Journal of Advanced Manufacturing Technology, 2010, 53: 181-190.
[9] KungK Y, Chiang K T. Modeling and analysis of machinability evaluation in the wire electrical discharge machining (WEDM) process of aluminum oxide-based ceramic[J]. Materials and Manufacturing Processes, 2008,23: 241-250.
[10] AgarwalA, Singh H, Kumar P, et al. Optimisation of power consumption for CNC turned parts using response surface methodology and Taguchi’s technique-a comparative study[J]. Journal of Materials Processing Technology, 2008, 200: 373-384.
[11] 崔岩. 碳化硅颗粒增强铝基复合材料的航空航天应用[J]. 材料工程, 2002(6):3-6.
CUI Yan. Aerospace applications of silicon carbide particulate reinforced aluminium matrix composites[J]. Journal of Materials Engineering, 2002(6):3-6. (in Chinese)
[12] 张志红, 何桢, 郭伟. 在响应曲面方法中三类中心复合设计的比较研究[J]. 沈阳航空工业学院学报,2007,24(1):87-91.
ZHANG Zhi-hong, HE Zhen, GUO Wei. A comparative study of three central composite designs in response surface methodology[J]. Journal of Shenyang Institute of Aeronautical Engineering, 2007,24(1):87-91. (in Chinese)
[13] PanduroM A, Brizuela C A, Balderas L I, et al. A comparison of genetic algorithms, particle swarm optimization and the differential evolution method for the design of scannable circular antenna arrays[J]. Progress in Electromagnetics Research B, 2009, 13:171-186.

Accesses

Citation

Detail

段落导航
相关文章

/