基于时变曲线模型的合成孔径声纳图像自动均衡方法研究

刘维;江泽林;刘纪元;黄海宁

兵工学报 ›› 2014, Vol. 35 ›› Issue (3) : 347-354.

兵工学报 ›› 2014, Vol. 35 ›› Issue (3) : 347-354. DOI: 10.3969/j.issn.1000-1093.2014.03.009
论文

基于时变曲线模型的合成孔径声纳图像自动均衡方法研究

  • 刘维, 江泽林, 刘纪元, 黄海宁
作者信息 +

A Time-variant Curve Model-based Automatic Equalization Method for Synthetic Aperture Sonar Images

  • LIU Wei, JIANG Ze-lin, LIU Ji-yuan, HUANG Hai-ning
Author information +
文章历史 +

摘要

针对合成孔径声纳(SAS)图像不均衡问题,提出一种基于时变曲线模型的SAS图像自动均衡方法。以声传播模型、水底后向散射模型和SAS成像模型为基础,推导时变曲线(TVC)的表达式;结合SAS图像的统计特征,推导TVC观测量的计算方法;用非线性最小二乘拟合方法完成TVC估计;基于TVC进行了SAS图像的自动均衡。用湖试和海试数据对该方法进行了验证,结果表明推导的TVC表达式与试验数据具有较好的吻合度,提出的自动均衡方法可有效地消除SAS图像的不均衡问题。

Abstract

A time-variant curve (TVC) model-based automatic equalization method is proposed for the intensity variation problem of synthetic aperture sonar (SAS) images. A theoretical expression of TVC is deduced based on sound transmission model, underwater backscattering strength model and SAS image model. A method to calculate the TVC observations is established based on the statistical model of SAS images. An estimation method based on non-linear least square fitting model (NL-LSFM) is used to acquire the optimized parameter of TVC. At last, the SAS images are automatically equalized and enhanced based on the optimized TVC. The method proposed has been validated by lake and sea trials. The test results show that the result calculated by the TVC expression is consistent with the experimental data, and the automatic equalization method can remove the intensity variation of SAS images properly.

关键词

信息处理技术 / 合成孔径声纳 / 图像均衡 / 时变曲线 / 威布尔分布

Key words

information processing / synthetic aperture sonar / image equalization / time-variant curve / Weibull distribution

引用本文

导出引用
刘维, 江泽林, 刘纪元, 黄海宁. 基于时变曲线模型的合成孔径声纳图像自动均衡方法研究. 兵工学报. 2014, 35(3): 347-354 https://doi.org/10.3969/j.issn.1000-1093.2014.03.009
LIU Wei, JIANG Ze-lin, LIU Ji-yuan, HUANG Hai-ning. A Time-variant Curve Model-based Automatic Equalization Method for Synthetic Aperture Sonar Images. Acta Armamentarii. 2014, 35(3): 347-354 https://doi.org/10.3969/j.issn.1000-1093.2014.03.009

基金

国家自然科学基金项目(11204343);哈尔滨工程大学水下机器人技术重点实验室基金项目(9140C27020112022601)

参考文献

[1] CoirasE, Myers V, Evans B. Reliable seabed characterization for MCM operations[C]∥OCEANS 2007. Vancouver, BC:IEEE, 2007:1-5.
[2] Fandos R,Zoubir A M. Optimal feature set for automatic detection and classification of underwater objects in SAS images[J].Selected Topics in Signal Processing, 2011,5(3):454-468.
[3] Maussang F,Chanussot J,Hetet A. Mean-standard deviation representation of sonar images for echo detection: application to SAS images[J].Oceanic Engineering, 2007,32(4): 956-970.
[4] Dobeck G J. Image normalization using the serpentine forward-backward filter: application to high-resolution sonar imagery and its impact on mine detection and classification[C]∥Defense and Security.Orlando, Florida, US:International Society for Optics and Photonics, 2005: 381-391.
[5] Capus C G, Banks A C, Coiras E, et al. Data correction for visualisation and classification of sidescan SONAR imagery[J]. IET Radar, Sonar & Navigation, 2008, 2(3): 155-169.
[6] Isaacs J C, Tucker J D. Signal diffusion features for automatic target recognition in synthetic aperture sonar[C]∥Digital Signal Processing Workshop and IEEE Signal Processing Education Workshop (DSP/SPE). Sedona, AZ: IEEE, 2011: 461-465.
[7] 李启虎. 数字式声纳设计原理.[M] 合肥:安徽教育出版社,2002:164-167.
LI Qi-hu. Principle of digital sonar design[M]. Hefei: Anhui Educational Publishing House,2002:164-167. (in Chinese)
[8] 北大西洋公约组织水下研究中心,美国PSI公司. 海洋水声环境和声纳设计手册[M].北京:海潮出版社,2010:129.
NATO Underwater Research Center, US PSI Corporation. Ocean acoustic environment and sonar design manual[M]. Beijing: Haichao Press, 2010:129. (in Chinese)
[9] 刘维.多子阵SAS三维模型仿真与数据处理算法研究[D]. 北京:中国科学院声学研究所,2008:45-60.
LIU Wei. Research on multiple-receiver SAS three dimensional model simulation and data processing algorithms [D].Beijing: Institute of Acoustics, Chinese Academy of Sciences,2008:45-60. (in Chinese)
[10] 刘维,张春华,刘纪元.FFBP算法在合成孔径声纳成像中的应用[J]. 声学技术,2009,28(5):572-576.
LIU Wei, ZHANG Chun-hua, LIU Ji-yuan. Application of FFBP algorithm to synthetic aperture sonar imaging[J]. Acoustical Technology, 2009, 28(5):572-576. (in Chinese)
[11] FergusonB G,Wyber R J. Generalized framework for real aperture, synthetic aperture, and tomographic sonar imaging[J]. Oceanic Engineering, 2009,34(3):225-238.
[12] 刘维,刘纪元,张春华.多子阵合成孔径声呐波数域算法不均匀采样问题研究[J].声学学报,2009,34(3):203-210.
LIU Wei, LIU Ji-yuan, ZHANG Chun-hua. Research on non-uniform sampling problem when adapting wave number algorithm to multiple-receiver synthetic aperture sonar[J]. Acta Acustica, 2009, 34(3): 203-210. (in Chinese)
[13] Madsen K, Nielsen H B, Tingleff O.Methods for non-linear least squares problems[M]. 2nd ed. Copenhagen: University of Denmark,2004:17-50.
[14] ComA R, Gould N I M, Toint P L. Trust region methods[M]. Philadelphia:SIAM,2010:115-168.
[15] PhamHoang. Springer handbook of engineering statistics[M]. New York: Springer, 2006:64-72.

文章所在专题

智能系统与装备

535

Accesses

0

Citation

Detail

段落导航
相关文章

/