DNAN 基熔铸炸药成型过程数值仿真

蒙君煚;张向荣;周霖

兵工学报 ›› 2013, Vol. 34 ›› Issue (7) : 810-814.

兵工学报 ›› 2013, Vol. 34 ›› Issue (7) : 810-814. DOI: 10.3969/j.issn.1000-1093.2013.07.002
研究论文

DNAN 基熔铸炸药成型过程数值仿真

  • 蒙君煚, 张向荣, 周霖
作者信息 +

Simulation of Solidification Process for DNAN-based Melt-cast Explosives

  • MENG Jun-jiong, ZHANG Xiang-rong, ZHOU Lin
Author information +
文章历史 +

摘要

为模拟DNAN 基熔铸炸药成型过程,采用结构网格计算流场和温度场、非结构网格计算应力场的方法,得到DNAN 基熔铸炸药冷却凝固时清晰的固液界面以及合理的缩孔缩松及热应力分布。通过对比研究,在一定模具和装药尺寸条件下,提出减少DNAN 基熔铸炸药装药缩孔缩松、降低热应力极值以及缩短凝固时间的优化方案,方案为模具上表面保温1 h,模具下表面30 益恒温水浴。

Abstract

In order to simulate the pouring and solidification process of DNAN based melt-cast explosives, flow and thermal fields were calculated using structured mesh, and stress field was calculated usingunstructured mesh. This numerical scheme can obtain an accurate interface between solid and liquid,reasonable shrinkage and stress data. By comparison research, on the condition of certain mould andcharge size, the optimized scheme for DNAN-based melt-cast explosives is that thermal insulation on upper mould surface for an hour with 30℃ water on lower mould surface, in order to decrease shrinkage,thermal stress value and solidification time by overall consideration.

关键词

兵器科学与技术 / 流变学 / 熔铸炸药 / 结构与非结构网格 / 装药缺陷

Key words

ordnance science and technology / rheology / melt-cast explosive / structured and unstructured mesh / charge defect

引用本文

导出引用
蒙君煚, 张向荣, 周霖. DNAN 基熔铸炸药成型过程数值仿真. 兵工学报. 2013, 34(7): 810-814 https://doi.org/10.3969/j.issn.1000-1093.2013.07.002
MENG Jun-jiong, ZHANG Xiang-rong, ZHOU Lin. Simulation of Solidification Process for DNAN-based Melt-cast Explosives. Acta Armamentarii. 2013, 34(7): 810-814 https://doi.org/10.3969/j.issn.1000-1093.2013.07.002

参考文献

[1] 李敬明, 田勇, 张明, . 熔黑梯炸药凝固过程的数值模拟与实验验证[J]. 含能材料, 2009, 17(4):428 -430.

LI Jing-ming, TIAN Yong, ZHANG Ming, et al. Numerical simulation and experimental validation of RHT solidification process[J]. Chinese Journal of Energetic Materials, 2009, 17(4):428-430. (in Chinese)

[2] 李敬明, 田勇, 张伟斌, . 炸药熔铸过程缩孔和缩松的形成与预测[J]. 火炸药学报, 2011, 34(2):17 -20.

LI Jing-ming, TIAN Yong, ZHANG Wei-bin, et al. Formation and prediction of shrinkage hole and shrinkage porosity in explosive during casting process[J]. Chinese Journal of Explosives & Propellants, 2011, 34(2): 17 -20. (in Chinese)

[3] 陈锐. 装药缺陷对发射安全性的影响研究[D]. 北京: 北京理工大学, 2006.

CHEN Rui. Research on the effects of charge defects on launch safety[D]. Beijing: Beijing Institute of Technology, 2006. (inChinese)

[4] 田勇. 炸药熔铸成型过程监测评价及数值模拟研究[D]. 北京:中国科学院研究生院工程热物理研究所, 2010.

TIAN Yong. Process monitoring/ evaluation and numerical simulation during casting explosive solidification[D]. Beijing: Instituteof Engineering Thermophysics of Graduate University of Chinese Academy of Sciences, 2010. (in Chinese)

[5] Wang D L, Xie Z Y, Sun W X, et al. Solidification simulation of melt-cast explosive under pressurization[C] //Proceedings of the 6th International Conference on Physical and Numerical Simulation of Materials Processing. Guilin: Gulin University of Electronic Technology, 2012: 71 -75.

[6] Gremaud M, Rappaz M. Modeling of foundry processes: differences between various solutions[J]. Transactions of the American Foundry Society, 2001, 109:1 -12.

[7] Patankar S V. Numerical heat transfer and fluid flow[M]. New York: Hemisphere Publishing Corporation, 1980.

[8] ESI Group, ProCAST 2010.0 User’s Manual [M]. Version 2009.1. US: ESI North America, 2010.

798

Accesses

0

Citation

Detail

段落导航
相关文章

/