扩展弹道成型末制导律特性分析与应用研究

王辉;林德福;祁载康;张頔

兵工学报 ›› 2013, Vol. 34 ›› Issue (7) : 801-809.

兵工学报 ›› 2013, Vol. 34 ›› Issue (7) : 801-809. DOI: 10.3969/j.issn.1000-1093.2013.07.001
研究论文

扩展弹道成型末制导律特性分析与应用研究

  • 王辉1,2, 林德福2, 祁载康2, 张頔2
作者信息 +

Analysis and Application Study on the Extended Trajectory Shaping Guidance Law

  • WANG Hui1,2, LIN De-fu2, QI Zai-kang2, ZHANG Di2
Author information +
文章历史 +

摘要

基于剩余飞行时间的指数函数构建了扩展的权函数和目标函数,引入常值机动目标,利用最优控制理论,扩展得到最优弹道成型制导律簇。针对无制导动力学滞后的制导系统,利用施瓦茨不等式,求解得到了在初始位置误差、方向误差、目标常值机动及终端落角约束作用下的制导律加速度指令解析解。分析指出,当罚函数中剩余飞行时间的指数大于0 时,加速度指令在弹道末端趋近于0. 利用无量纲化方法和伴随法,研究了含有一阶动力学滞后的制导系统在初始方向误差和终端落角约束作用下的无量纲位置和角度脱靶量特性。结果表明:当末导时间为制导系统动力学滞后时间常数的15 倍左右时,落角约束、初始方向误差引起的位置和角度脱靶量均趋近于0;且初始方向误差角和终端落角方向相反时的位置和角度脱靶量要小于二者同号时的情况。

Abstract

The extended weighted and object functions are proposed based on the time-to-go exponential function. The optimal control theory is used to deduce a family of extended optimal trajectory shaping guidance laws for the constant maneuvering target. According to Schwartz inequality, the analytical solution of the guidance law acceleration command is derived by introducing the initial displacement, initial heading error, target maneuver and final impact angle into the lag-free guidance system. The analysis shows that the final acceleration command approaches to zero when the exponent of the time-to-go exponential function is greater than zero. The non-dimensional position and angle miss distance of guidance system with first order lag are studied using the non-dimensional method and the adjoint method. The results show that the position and angle miss distance induced by the heading error and final impact angle approach to zero when the missile terminal guidance time is about 15 times of the system lag time constant. And also, the position and angle miss-distance are smaller when the signs of initial heading error angle and final impact angle are opposite.

关键词

飞行器控制、导航技术 / 扩展弹道成型 / 剩余飞行时间 / 最优控制 / 施瓦茨不等式 / 脱靶量

Key words

control and navigation technology of aerocraft / extended trajectory shaping / time-to-go / optimal control / Schwartz inequality / miss distance

引用本文

导出引用
王辉, 林德福, 祁载康, 张頔. 扩展弹道成型末制导律特性分析与应用研究. 兵工学报. 2013, 34(7): 801-809 https://doi.org/10.3969/j.issn.1000-1093.2013.07.001
WANG Hui, LIN De-fu, QI Zai-kang, ZHANG Di. Analysis and Application Study on the Extended Trajectory Shaping Guidance Law. Acta Armamentarii. 2013, 34(7): 801-809 https://doi.org/10.3969/j.issn.1000-1093.2013.07.001

基金

国家自然科学基金项目(61172182)

参考文献

[1] Ohlmeyer E J,Phillips C A. Generalized vector explicit guidance[J ]. Journal of Guidance, Control, and Dynamics, 2006,29(2):261-268.
[2] Zarchan P. Tactical and strategic missile guidance[M]. 5th ed.Washington DC: America Institute of Aeronautics and Astronau-tics, 2007: 31-50, 541-569.
[3] Ben-Asher J Z, Yaesh I. Optimal guidance with reduced sensitivi-ty to time-to-go estimation errors [J]. Journal of Guidance, Con-trol, and Dynamics, 1997, 20(1):158-163.
[4] Ben-Asher J Z, Yaesh I. Advances in missile guidance theory[M]. Virginia: AIAA Inc, 1998.
[5] Ryoo C K,Cho H, Tahk M J. Optimal guidance laws with terminalimpact angle constraint[J]. Journal of Guidance, Control, andDynamics, 2005, 28(4):724-732.
[6] Ryoo C K,Cho H,Tahk J. Time-to-go weighted optimal guidancewith impact angle constraints[J]. IEEE Transactions on ControlSystems Technology, 2006,14(3): 483-492.
[7] Ryoo C K,Cho H,Tahk M J. Closed-form solutions of optimalguidance with terminal impact angle constraint[C]
IEEE Inter-national Conference on Control Application. Istanbul: IEEE,2003: 504-509.
[8] Wang H, Lin D F, Cheng Z X. Time-to-go weighted optimal traj-ectory shaping guidance law [J]. Transactions of Beijing Instituteof Technology, 2011, 20(3): 317-323.
[9]
常超, 林德福, 祁载康, . 带落点和落角约束的最优末制导律研究[J]. 北京理工大学学报, 2009, 29(3): 233-239.CHANG Chao, LIN De-fu, QI Zai-kang, et al. Study on the opti-mal terminal guidance law with interception
 and impact angle[J].Transactions of Beijing Institute of Technology, 2009, 29 (3):233-239. (in Chinese)
[10]
刘大卫, 夏群利, 崔莹莹,. 具有终端位置和角度约束的广义弹道成型制导律[J]. 北京理工大学学报, 2011, 31(12):1408-1413.LIU Da-wei, XIA Qun-li, CUI Ying-ying, et al. Generalizedtrajectory shaping guidance law with both impact position and an-gle constrains[J]. Transactions of Beijing Institute of Technolo-gy, 2011, 31(12): 1408-1413. (in Chinese)
[11] Lukacs J A, Yakimenko O A. Trajectory-shape-varying missileguidance for interception of ballistic missiles during the boostphase[C]
AIAA Guidance, Navigation and Control Conferenceand Exhibit. Carolina: AIAA, 2007: 2007-6538.
[12] Garnell P. Guided weapon control systems [M]. Beijing: Bei-jing Institute of Technology, 2003:297-364.

文章所在专题

制导技术

弹道学

752

Accesses

0

Citation

Detail

段落导航
相关文章

/