基于单一类型载流子,讨论了电子倍增CCD(EMCCD)的雪崩倍增原理,并在此基础上使用经典分段电离率模型,结合雪崩倍增积分关系式建立了EMCCD的倍增模型。根据实际器件倍增结构和栅压幅值确定使用Wolff多次碰撞电离理论。通过倍增模型的理论计算与实际器件的倍增曲线比较发现边缘场强度足够大,倍增区足够宽才能引起适当的信号倍增。该模型可以方便地计算单一类型载流子信号通过全固态多级级联电子倍增寄存器后的总增益与倍增栅压的关系曲线。计算结果表明,倍增模型与现有EMCCD器件倍增数据吻合较好。基于单一类型载流子,讨论了电子倍增CCD(EMCCD)的雪崩倍增原理,并在此基础上使用经典分段电离率模型,结合雪崩倍增积分关系式建立了EMCCD的倍增模型。根据实际器件倍增结构和栅压幅值确定使用Wolff多次碰撞电离理论。通过倍增模型的理论计算与实际器件的倍增曲线比较发现边缘场强度足够大,倍增区足够宽才能引起适当的信号倍增。该模型可以方便地计算单一类型载流子信号通过全固态多级级联电子倍增寄存器后的总增益与倍增栅压的关系曲线。计算结果表明,倍增模型与现有EMCCD器件倍增数据吻合较好。
Abstract
The avalanche multiplication principle of electron multiplying CCD(EMCCD) was discussed based on single type of carrier, and a multiplication model was built by using a classic piecewise ionization rate model and avalanche multiplication integral formula. Wolff’s ionization rate model was selected according to the structure and the multiplication gate voltage amplitude of the actual devices. By comparing the theoretical result with the multiplication curve of the actual device, it can be found that only enough fringing field and multiplication area can lead to an adequate signal multiplication. The relationship between the multiplication gate voltage and the total gain of the cascaded boosting EMCCD can be determined by using the model. The calculation indicates that the actual device multiplication curve agreed well with the one of EMCCD theory model.
关键词
光电子学与激光技术 /
电子倍增CCD /
电子倍增 /
片上增益 /
边缘场 /
电荷倍增极
{{custom_keyword}} /
Key words
optoelectronics and laser /
electron multiplying CCD /
electron multiplication /
gain-on-chip /
fringing field /
charge multiplication gate
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 陈晨, 许武军, 翁东山, 等. 电子倍增CCD噪声来源和信噪
比分析[J]. 红外技术, 2007, 29(11): 634-637.
CHEN Chen, XU Wu-jun, WENG Dong-shan, et al. The noise sources and SNR analysis of electronic multiplying CCD[J]. Infrared Technology, 2007, 29(11): 634-637. (in Chinese)
[2] 张灿林, 陈钱, 周蓓蓓. 高灵敏度电子倍增CCD的发展现状[J]. 红外技术, 2007, 29(4): 192-195.
ZHANG Can-lin, CHEN Qian, ZHOU Bei-bei. Recent progress toward ultra-sensitivity EMCCD[J]. Infrared Technology, 2007, 29(4): 192-195. (in Chinese)
[3] MackayC D, Tubbs R N, Bell R, et al. Sub-electron read noise at MHz pixel rates[J]. Proceeding of SPIE, 2001, 4306: 289-298.
[4] 韩露, 熊平. EMCCD工作原理及性能分析[J]. 传感器世界技术与应用, 2009, 15(5):24-28.
HAN Lu, XIONG Ping. The analysis of operating principle and performance of EMCCD[J]. Senor World Technology & Application, 2009, 15(5):24-28. (in Chinese)
[5] 许武军, 李建伟, 危峻, 等. 电子倍增CCD在天基空间监视中的应用[J]. 科学技术与工程, 2006, 6(1): 42-55.
XU Wu-jun, LI Jian-wei, WEI Jun, et al. Application of EMCCD in space-based space surveillance[J]. Science Technology and Engineering, 2006, 6(1): 42-55. (in Chinese)
[6] 龚德铸, 王立, 卢欣. 微光探测EMCCD在高灵敏度星敏感器中的应用研究[J]. 空间控制技术与应用, 2008, 34(2): 44-48.
GONG De-zhu, WANG Li, LU Xin. Research on application of faint light detection based EMCCD in high sensitivity star sensor[J]. Aerospace Control and Application, 2008, 34(2): 44-48. (in Chinese)
[7] Denvir D J, Coates C G. Electron multiplying CCD technology: application to ultrasensitive detection of biomolecules[J]. Proceedings of SPIE, 2002, 4626: 502- 512.
[8] Maes W, De Meyer K, Van Overstraenten R. Impact ionization in silicon: a review and update[J]. Solid-State Electronics, 1990, 33(6): 705-718.
[9] Thornber K K. Applications of scaling to problems in high-field electronic transport[J]. J Appl Phys, 1981, 52 (1): 279-290.
[10] ZhangC L, Chen Q, Yin L J. Multiplication conditions of EMCCD[J]. Acta Photonica Sinica, 2009, 38(11): 2771-2775.
[11] TC247SPD-B0 680×500 pixel impactron monochrome CCD image sensor[DB /OL]. (2005-03-01)[2004-12-01]. http://ccd.com/pdf/ccd_247.pdf.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}